
Unit 6: Bayesian Statistics

2. Basics of Bayesian Inference
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Recap from last time

1. What you mean by “probability” has implications for what 
statistical tools you should use 

2. Bayesian probability conceives of probability as subjective rather 
objective. That means you can talk about probability of beliefs 
rather than of data.

3. This is an active area of research in statistics, and the solutions are 
less tidy (but also probably less wrong) 
than the models we have used so far



Key ideas

1. Likelihood ratios give us a way to compare models 
(the step function is approximating this) 

2. Bayesian inference naturally encodes a preference for simpler 
models through posterior averaging

3. We can infer the values of unknown parameters in a way that 
reflects both the data and our prior beliefs



A reminder of Bayes’ Rule

Bayes’ Rule:

 Posterior Probability
(What you should believe now)

 Prior Probability
(What you used to believe)Likelihood

(What the data say)



Deriving Bayes’ Rule

Definition of joint probability

Transitive property



Bayesian Inference for Coin Flips

HHTHT
HHHHH

What process produced these sequences?

Slides adapted from a tutorial by Josh Tenenbaum



What are hypotheses?

Hypotheses H refer to processes that could have generated the 
data D. for each hypothesis Hi, P(D|Hi) is the probability of D 
being generated by the process identified by hypothesis Hi

Bayesian inference gives us a method for inferring a distribution 
of belief over these hypotheses, given that we observed data D

Hypotheses H are mutually exclusive: only one process could 
have generated D



Hypotheses for coin flips

Describe processes by which D could be generated

D = HHTHT

• Fair coin, P(H) = 0.5
• Biased coin with P(H) = p
• Several different coins and a rule 

about when to flip which,
• etc...

Statistical models



Comparing Hypotheses

1. Two simple hypotheses:
H1: Fair coin — p(H) = .5 vs. 
H2: Always heads — p(H) = 1 

2. Simple vs. complex hypothesis
H1: Fair coin — p(H) = .5 vs. 
H2: Biased coin — p(H) = p 

3. Infinitely many hypotheses
Hi: Biased coin — p(Hi ) = pi 



Comparing simple hypotheses 

1. Two simple hypotheses:
H1: Fair coin — p(H) = .5 vs. 
H2: Always heads — p(H) = 1 

Bayes’ Rule:

Ratio Form



Bayes Rule in Odds Form

P(H1|D)           P(D|H1)          P(H1)
P(H2|D)           P(D|H2)          P(H2)

D:         data

H1, H2:  models

P(H1|D): posterior probability H1 generated the data 

P(D|H1): likelihood of data under model H1

P(H1):  prior probability H1 generated the data 

                       =                     x



Odds for two simple hypotheses

P(H1|D)           P(D|H1)          P(H1)
P(H2|D)           P(D|H2)          P(H2)

D: HHTHT
H1: “fair coin”                     vs.               H2: “always heads”

                       =                     x

 P(D|H1) = 1/25      P(D|H2) = 0

     P(H1) = 999/1000            P(H2) = 1/1000

P(H1|D) / P(H2|D)= infinity



Odds for two simple hypotheses

P(H1|D)           P(D|H1)          P(H1)
P(H2|D)           P(D|H2)          P(H2)

D: HHHHH
H1: “fair coin”                     vs.               H2: “always heads”

                       =                     x

 P(D|H1) = 1/25      P(D|H2) = 1

     P(H1) = 999/1000            P(H2) = 1/1000

P(H1|D) / P(H2|D) ≈ 30



Odds for two simple hypotheses

P(H1|D)           P(D|H1)          P(H1)
P(H2|D)           P(D|H2)          P(H2)

D: HHHHHHHHHH
H1: “fair coin”                     vs.               H2: “always heads”

                       =                     x

 P(D|H1) = 1/210      P(D|H2) = 1

     P(H1) = 999/1000            P(H2) = 1/1000

P(H1|D) / P(H2|D) ≈ 1



Comparing simple and complex hypotheses
2. Simple vs. complex hypothesis

H1: Fair coin — p(H) = .5 vs. 
H2: Biased coin — p(H) = p 

H2: P(H) = p is more complex than H1:P(H) = 0.5 in two ways:
1. H1is a special case of H2
2. for any observed data D, 

we can choose p such that D is more like than if P(H) = 0.5



Comparing simple hypotheses



Comparing simple and complex hypotheses



Comparing simple and complex hypotheses
2. Simple vs. complex hypothesis

H1: Fair coin — p(H) = .5 vs. 
H2: Biased coin — p(H) = p 

H2: P(H) = p is more complex than H1:P(H) = 0.5 in two ways:
1. H1is a special case of H2
2. for any observed data D, 

we can choose p such that D is more like than if P(H) = 0.5

How do we deal with this?
1. frequentist: hypothesis testing
2. Bayesian: falls out of rules of probability



Comparing simple and complex hypotheses

P(H1|D)           P(D|H1)          P(H1)
P(H2|D)           P(D|H2)          P(H2)

H1: p(H) = .5                vs.               H2: p(H) = p  

                       =                     x

Computing P(D|H1) is easy:  P(D|H1) = 1/2N

 We can compute P(D|H2) by averaging over p:

Prior on p



Assuming that every p is equally likely apriori



Comparing infinitely many hypotheses
2. Infinitely many hypotheses

Hi: Biased coin — p(Hi ) = pi 

Assume the data are 
generated from a model: d1       d2       d3       d4

P(H) = p

p



Picking a likelihood and prior

For a coin with weight p, the probability of observing data D is: 

This gives us a likelihood. 

But how do we pick a prior?

P(D|p) =  pNH (1-p)NT



Comparing infinitely many hypotheses for coins

Suppose you flipped a coin 10 times and saw 5H and 5T

How likely do you think you are to see H on the next flip?

Probably 50/50 because you have seen 5H and 5T

Suppose you flipped a coin 10 times and saw 4H and 6T

How likely do you think you are to see H on the next flip?

Probably closer to 50/50 than 40/60. Why? Prior Knowledge



Imagining coin flips

One way of thinking about what you believed is that you are 
combining your previous experience of coin flips with the data D.

You could model this as seeing 
e.g. 5 heads and 5 tails in the past. 

Or 50 heads and 50 tails.

Or 500 heads and 500 tails, etc. 

The more experience you have seen the less you should be 
moved by seeing the data D.



Formalizing imagined coin flips

These hypothetical coin flips can 
be modeled by a distribution 
called Beta which has two 
parameters α and β. 

Beta(α, β) encodes models seeing 
α heads and β tails in the past.

Wikipedia



What does this model predict?

Try this shiny app to explore how changing your prior (by 
changing (α and β) and changing the data you observe 
change your posterior beliefs about the coin weight.

https://shiny.stat.ncsu.edu/jbpost2/BasicBayes/

https://shiny.stat.ncsu.edu/jbpost2/BasicBayes/


Key ideas

1. Likelihood ratios give us a way to compare models 
(the step function is approximating this) 

2. Bayesian inference naturally encodes a preference for simpler 
models through posterior averaging

3. We can infer the values of unknown parameters in a way that 
reflects both the data and our prior beliefs


