
We have data for a total of 1261 shots
(excluding the first shot of each game)

TOTAL 1261

642 of those shots were shots where the
previous shot was missed. 619 were shots
where the previous shot was made.

Previous
shot missed

Previous
shot made

TOTAL 642 619 1261

For convenience, call these “not shots”
and “hot shots”

“Not Shots”
Previous shot

missed

“Hot Shots”
Previous shot

made

TOTAL 642 619 1261

Of the 642 shots where the previous shot was
missed, he missed 313 and made 329.

“Not Shots”
Previous shot

missed

“Hot Shots”
Previous shot

made

Missed this
shot

313

Made this
shot

329

TOTAL 642 619 1261

Of the 619 shots where the previous shot
was made, he missed 334 and made 285.

“Not Shots”
Previous shot

missed

“Hot Shots”
Previous shot

made

Missed this
shot

313 334

Made this
shot

329 285

TOTAL 642 619 1261

Overall, he missed 647 shots and made
614 shots.

“Not Shots”
Previous shot

missed

“Hot Shots”
Previous shot

made
TOTAL

Missed this
shot

313 334 647

Made this
shot

329 285 614

TOTAL 642 619 1261

He made 51% of “not shots” and 46% of
“hot shots”.

“Not Shots”
Previous shot

missed

“Hot Shots”
Previous shot

made
TOTAL

Missed this
shot

313 334 647

Made this
shot

329 285 614

TOTAL 642 619 1261

329/642 =
0.51

285/619 =
0.46

He made 5% fewer hot shots than not shots. Do we
believe that he’s truly worse at hot shots? Or could
the 5% difference just be due to random chance?

“Not Shots”
Previous shot

missed

“Hot Shots”
Previous shot

made
TOTAL

Missed this
shot

313 334 647

Made this
shot

329 285 614

TOTAL 642 619 1261

329/642 =
0.51

285/619 =
0.46

What our simulation does in
theory…

What our simulation does in
theory…

“Not Shots”
Previous

shot missed

“Hot Shots”
Previous

shot made
TOTAL

Missed this
shot

313 334 647

Made this
shot

329 285 614

TOTAL 642 619 1261

What our simulation does in
theory…

“Not Shots”
Previous

shot missed

“Hot Shots”
Previous

shot made
TOTAL

Missed this
shot

313 334 647

Made this
shot

329 285 614

TOTAL 642 619 1261

H
H

HH

H
H

H

NN

N

N N

Fill a box with 642 balls labeled N (not
shots) and 619 ball labeled H (hot shots)

What our simulation does in
theory…

“Not Shots”
Previous

shot missed

“Hot Shots”
Previous

shot made
TOTAL

Missed this
shot

313 334 647

Made this
shot

329 285 614

TOTAL 642 619 1261

H
H

HH

H
H

H

NN

N

N N

Get a bucket and label it “made”.
All the balls that end up in here will

stand for shots made.

Made

What our simulation does in
theory…

“Not Shots”
Previous

shot missed

“Hot Shots”
Previous

shot made
TOTAL

Missed this
shot

313 334 647

Made this
shot

329 285 614

TOTAL 642 619 1261

H
H

H
H

HH

H

NN
NN N

Randomly pick 614 balls out of the box
and put them in the made bucket

Made

What our simulation does in
theory…

“Not Shots”
Previous

shot missed

“Hot Shots”
Previous

shot made
TOTAL

Missed this
shot

313 334 647

Made this
shot

329 285 614

TOTAL 642 619 1261

H
H

H
H

HH

H

NN
NN N

Randomly pick 614 balls out of the box
and put them in the made bucket

Made

Stop and think.
Why are we picking 614

balls???

What our simulation does in
theory…

“Not Shots”
Previous

shot missed

“Hot Shots”
Previous

shot made
TOTAL

Missed this
shot

647

Made this
shot

614

TOTAL 642 619 1261

H
H

H
H

HH

H

NN
NN N

Count the number of H’s and N’s in the
made bucket and record.

Made

What our simulation does in
theory…

“Not Shots”
Previous

shot missed

“Hot Shots”
Previous

shot made
TOTAL

Missed this
shot

647

Made this
shot 300 314 614

TOTAL 642 619 1261

H
H

H
H

HH

H

NN
NN N

Count the number of H’s and N’s in the
made bucket and record.

Made

(Note: will likely be different every time,
but imagine, for example, that we got

300 Ns and 314 Hs this time)

What our simulation does in
theory…

“Not Shots”
Previous

shot missed

“Hot Shots”
Previous

shot made
TOTAL

Missed this
shot

647

Made this
shot 300 314 614

TOTAL 642 619 1261

300/642 =
47%

314/619=
51%

H
H

H
H

HH

H

NN
NN N

Calculate the percentage of hot shots
made and not shots made

Made

What our simulation does in
theory…

“Not Shots”
Previous

shot missed

“Hot Shots”
Previous

shot made
TOTAL

Missed this
shot

647

Made this
shot 300 314 614

TOTAL 642 619 1261

300/642 =
.47

314/619=
.51

H
H

H
H

HH

H

NN
NN N

Subtract (Hot Shots Percentage – Not
Shots Percentage) to find the difference.

(e.g. .51 - .47 = .04)

Made

What our simulation does in
theory…

“Not Shots”
Previous

shot missed

“Hot Shots”
Previous

shot made
TOTAL

Missed this
shot

647

Made this
shot 300 314 614

TOTAL 642 619 1261

300/642 =
.47

314/619=
.51

H
H

H
H

HH

H

NN
NN N

Subtract (Hot Shots Percentage – Not
Shots Percentage) to find the difference.

(e.g. .51 - .47 = .04)

Made

Record the percentage difference (e.g.
.04). Then put all balls back in the box.

What our simulation does in
theory…

“Not Shots”
Previous

shot missed

“Hot Shots”
Previous

shot made
TOTAL

Missed this
shot

647

Made this
shot

614

TOTAL 642 619 1261

H
H

HH

H
H

H

NN

N

N N

Made

What our simulation does in
theory…

“Not Shots”
Previous

shot missed

“Hot Shots”
Previous

shot made
TOTAL

Missed this
shot

647

Made this
shot

614

TOTAL 642 619 1261

H
H

HH

H
H

H

NN

N

N N

Made

Repeat 1,000 times. Each time record the
difference between hot shots percent made

and not shots percent made.

What the code actually does

What the code actually does
A few things to remember before we start:
• lag_data is a data frame that has all of the original Curry data,

plus a new column we made called “lag_shot”
• The lag_shot column says “TRUE” if the previous shot was made

and “FALSE” if the previous shot was missed

Number of shots taken after shots that were made
hot_shots <- lag_data %>%

filter(lag_shot) %>%
nrow()

This code says: take the data frame “lag_data” (which is just all of
the original data, plus the new column we made for lag_shot), then
filter it by giving me only the rows where the column lag_shot is
“TRUE”, then count the number of rows you gave me. Finally, store
th

What the code actually does
A few things to remember before we start:
• lag_data is a tibble that has all of the original Curry data, plus a

new column we made called “lag_shot”
• The lag_shot column says “TRUE” if the previous shot was made

and “FALSE” if the previous shot was missed

Number of shots taken after shots that were made
hot_shots <- lag_data %>%

filter(lag_shot) %>%
nrow()

This code says: take the tibble “lag_data, then filter it by giving
me only the rows where the column lag_shot is “TRUE”, then
count the number of rows you gave me. Finally, store that
value in the variable “hot_shots”

A few things to remember before we start:
• lag_data is a data frame that has all of the original Curry data,

plus a new column we made called “lag_shot”
• The lag_shot column says “TRUE” if the previous shot was

made and “FALSE” if the previous shot was missed

Number of shots taken after shots that were made
hot_shots <- lag_data %>%

filter(lag_shot) %>%
nrow()

This code says: take the tibble “lag_data”, then filter it by giving
me only the rows where the column lag_shot is “TRUE”, then
count the number of rows you gave me. Finally, store that value
in the variable “hot_shots”

Check for understanding: After running this code, “hot_shots”
should contain a single number. Specifically, it will be one of the
numbers in the table above. Which number should it contain?
Check if you’re right by typing “hot_shots” in the console and see
what value it returns.

What the code actually does
“Not Shots”

Previous
shot missed

“Hot Shots”
Previous

shot made
TOTAL

Missed this
shot

313 334 647

Made this
shot

329 285 614

TOTAL 642 619 1261

What the code actually does
Number of shots taken after shots that were made
hot_shots <- lag_data %>%

filter(lag_shot) %>%
nrow()

Number of shots made after shots that were made
hot_made <- lag_data %>%

filter(lag_shot & SHOT_MADE) %>%
nrow()

Number of shots taken after shots that were missed
not_shots <- lag_data %>%

filter(!lag_shot) %>%
nrow()

Number of shots made after shots that were missed
not_made <- lag_data %>%

filter(!lag_shot & SHOT_MADE) %>%
nrow()

“Not Shots”
Previous

shot missed

“Hot Shots”
Previous

shot made
TOTAL

Missed this
shot

313 334 647

Made this
shot

329 285 614

TOTAL 642 619 1261

Check for Understanding: The first block of code above is the one we just discussed. Look
carefully at the next three blocks of code. Can you figure out what each one does? Which of
the numbers from the table should be stored in the variables “hot_made”, “not_shots”, and
“not_made”? Check if you’re right by typing these variable names into the console (or look for
them in the environment window).

What the code actually does
Number of shots taken after shots that were made
hot_shots <- lag_data %>%

filter(lag_shot) %>%
nrow()

Number of shots made after shots that were made
hot_made <- lag_data %>%

filter(lag_shot & SHOT_MADE) %>%
nrow()

Number of shots taken after shots that were missed
not_shots <- lag_data %>%

filter(!lag_shot) %>%
nrow()

Number of shots made after shots that were missed
not_made <- lag_data %>%

filter(!lag_shot & SHOT_MADE) %>%
nrow()

“Not Shots”
Previous

shot missed

“Hot Shots”
Previous

shot made
TOTAL

Missed this
shot

313 334 647

Made this
shot

329 285 614

TOTAL 642 619 1261

Check for Understanding: The first block of code above is the one we just discussed. Look
carefully at the next three blocks of code. Can you figure out what each one does? Which of
the numbers from the table should be stored in the variables “hot_made”, “not_shots”, and
“not_made”? Check if you’re right by typing these variable names into the console (or look for
them in the environment window).

Tip: Write down what the four
variables (hot_shots, hot_made,
not_shots, and not_made) represent
and what numbers they equal. It will
make understanding the next block of
code much easier.

What the code actually does
simulate_null <- function() {

Make a list with the right number of shots of each type
shots <- c(rep("Hot", hot_shots), rep("Not", not_shots))
This says, make a list called “shots” that says “Hot” 619 times and
then “Not” 642 times. Do you see how it does that? Tip: Type
“shots” into the console to see what this looks like.

randomly select the made shots from this list
made <- sample(shots, hot_made + not_made)
This says, create a new list called “made” and fill it by randomly
picking 614 items from the list “shots”. Do you see how it does that?

What the code actually does
simulate_null <- function() {

Make a list with the right number of shots of each type
shots <- c(rep("Hot", hot_shots), rep("Not", not_shots))
This says, make a list called “shots” that says “Hot” 619 times and
then “Not” 642 times. Do you see how it does that? Tip: Type
“shots” into the console to see what this looks like.

randomly select the made shots from this list
made <- sample(shots, hot_made + not_made)
This says, create a new list called “made” and fill it by randomly
picking 614 items from the list “shots”. Do you see how it does that?

Check for understanding: Earlier, we described what the simulation does “in theory”
by imagining drawing balls from a box. What part of that theoretical description
does the list “shots” correspond to? What part does the list “made” correspond to?

What the code actually does
(Note: They grayed out code was discussed on the previous slide)

simulate_null <- function() {

Make a list with the right number of shots of each type
shots <- c(rep("Hot", hot_shots), rep("Not", not_shots))

randomly select the made shots from this list
made <- sample(shots, hot_made + not_made)

Compute the difference shot success between hot and not shots
random_hot_made <- sum(made == "Hot") / hot_shots
random_not_made <- sum(made == "Not") / not_shots
random_hot_made - random_not_made
}

Check for understanding: Can you figure out what this last block of code is doing?
Hint: Think back to the theoretical description of the simulation. Given everything
we’ve done so far, what’s left to do?

What the code actually does
(Note: They grayed out code was discussed on the previous slide)

simulate_null <- function() {

Make a list with the right number of shots of each type
shots <- c(rep("Hot", hot_shots), rep("Not", not_shots))

randomly select the made shots from this list
made <- sample(shots, hot_made + not_made)

Compute the difference shot success between hot and not shots random_hot_made <- sum(made == "Hot") /
hot_shots random_not_made <- sum(made == "Not") / not_shots random_hot_made - random_not_made
}

Notice that we’ve taken all of the above code and wrapped it in a function using {}.
Basically, we’re telling R to make a new function called “simulate_null”. This means that
from now on, every time I type “simulate_null”, R does everything inside the {}. For
example, try typing the following into a new chunk (after running the code above):
x <- simulate_null()
x
Run this code several times. You should see it spit out a different number each time. What
does that number represent? Why is it different each time?

What the code actually does
null_samples <- tibble(diff = replicate(1000, simulate_null()))
This says to run the function “simulate_null” 1000 times and to
store the results in a column called “diff” in a data frame called
“null_samples”

empirical_diff <- hot_made/hot_shots - not_made/not_shots
This has nothing to do with the simulation. It’s based on the
original data. Can you figure out what it does?

ggplot(null_samples, aes(x = diff)) + geom_histogram(bins =
100) + geom_vline(aes(xintercept = empirical_diff, color =
"darkred", size = 2))
See if you can figure out what this code does on your own!

