Unit 4: Regression and Prediction 3. Inference for Linear Regression (Chapter 5.4)

3/28/2022

- 1. We can use the slope and intercept of a regression line to make predictions
- 2. We can also sometimes extrapolate, but this can be fraught
- 3. Like other statistics we've explored so far, linear regression models are appropriate only when some conditions are met

- 1. A regression model's slope codes the relationship between the two measures
- 2. Correlation is equivalent to the slope of a regression for standardized values
- 3. Inference for regression parameters uses t-tests

Nature or nurture?

In 1966 Cyril Burt published a paper called "The genetic determination of differences in intelligence: A study of monozygotic twins reared apart"

The data consist of IQ scores for [an assumed random sample of] 53 identical twins, separated within 6-months of birth and raised apart

Practice Question 1: Interpreting regression output

	Estimate	Std. Error t value Pr(> t)		
(Intercept)	9.08670	6.92036	1.313	0.195
twin_a	0.90741	0.07004	12.957	<2e-16 ***

Residual standard error: 7.417 on 51 degrees of freedom Multiple R-squared: 0.767, Adjusted R-squared: 0.7624 F-statistic: 167.9 on 1 and 51 DF, p-value: < 2.2e-16

Which of the following is <u>false</u>?

- (a) An additional 10 points in one twin's IQ is associated with additional 9 points in the the other twin's IQ, on average.
- (b) Roughly 91% of the variance in twins' IQs can be predicted by the model.
- (c) The linear model is $twin_b = 9.08 + 0.91 \times twin_a$.
- (d) Twins in group b with IQs higher than average IQs tend to have biological twins in group a with higher than average IQs as well.

Practice Question 1: Interpreting regression output

	Estimate	Std. Error t value Pr(> t)		
(Intercept)	9.08670	6.92036	1.313	0.195
twin_a	0.90741	0.07004	12.957	<2e-16 ***

Residual standard error: 7.417 on 51 degrees of freedom Multiple R-squared: 0.767, Adjusted R-squared: 0.7624 F-statistic: 167.9 on 1 and 51 DF, p-value: < 2.2e-16

Which of the following is <u>false</u>?

- (a) An additional 10 points in one twin's IQ is associated with additional 9 points in the the other twin's IQ, on average.
- (b) Roughly 91% of the variance in twins' IQs can be predicted by the model.
- (c) The linear model is $twin_b = 9.08 + 0.91 \times twin_a$.
- (d) Twins in group b with IQs higher than average IQs tend to have biological twins in group a with higher than average IQs as well.

Practice Question 2: Testing the relationship

Assuming that these 53 pairs of twins are a representative sample of all twins separated at birth, we would like to test if these data provide convincing evidence that the IQ of a biological twin is a significant predictor of IQ of the other twin.

What are the appropriate hypotheses?

$$\hat{y} = \beta_0 + \beta_1 x$$

- (a) $H_0: b_0 = 0; H_A: b_0 \neq 0$
- (b) $H_0: \beta_0 = 0; H_A: \beta_0 \neq 0$
- (c) $H_0: b_1 = 0; H_A: b_1 \neq 0$
- (d) $H_0: \beta_1 = 0; H_A: \beta_1 \neq 0$

Practice Question 2: Testing the relationship

Assuming that these 53 pairs of twins are a representative sample of all twins separated at birth, we would like to test if these data provide convincing evidence that the IQ of a biological twin is a significant predictor of IQ of the other twin.

What are the appropriate hypotheses?

$$\hat{y} = \beta_0 + \beta_1 x$$

(a)
$$H_0: b_0 = 0; H_A: b_0 \neq 0$$

(b)
$$H_0: \beta_0 = 0; H_A: \beta_0 \neq 0$$

(c)
$$H_0: b_1 = 0; H_A: b_1 \neq 0$$

(d)
$$H_0: \beta_1 = 0; H_A: \beta_1 \neq 0$$

Analyzing the slope of the regression line

	estimate	std.error	t-value	p-value
(Intercept)	9.0867	6.9203	1.3130	0.1950
twin_a	0.9074	0.0700	12.956	0.0000

We always use a **t-test** in inference for regression.

Remember: test statistic *T* = (*point estimate - null value*) / *SE*

Point estimate: b_1 is the observed slope. SE_{h1} is the standard error of the slope.

Degrees of freedom of the slope is df = n - 2, where n is the sample size.

Remember: we lose 1 degree of freedom for each parameter we estimate, and in simple linear regression we estimate 2 parameters, β_0 and β_1 .

Analyzing the slope of the regression line

	estimate	std.error	t-value	p-value
(Intercept)	9.0867	6.9203	1.3130	0.1950
twin_a	0.9074	0.0700	12.956	0.0000

$$T = \frac{.9074 - 0}{.0700} = 12.956$$
$$df = 53 - 2 = 51$$
$$p - value = P(|T| > 12.956) < .001$$

What is the relationship between slope and correlation?

	estimate	std.error	t-value	p-value
(Intercept)	9.0867	6.9203	1.3130	0.1950
twin_a	0.9074	0.0700	12.956	0.0000

Practice Question 3: Confidence intervals for regression estimates

Remember that a confidence interval is calculated as point estimate ± ME and the degrees of freedom associated with the slope in a simple linear regression is n - 2. Which of the below is the correct 95% confidence interval for the slope parameter? (Note that the model is based on observations from 53 twins).

	estimate	std.error	t-value	p-value
(Intercept)	9.0867	6.9203	1.3130	0.1950
twin_a	0.9074	0.0700	12.956	0.0000

- (a) 9.0867 ± 1.65 x 6.9203
- (b) .9074 ± 2.01 x .0700
- (c) $.9074 \pm 1.96 \times .0700$
- (d) 9.0867 ± 1.96 x .0700

Practice Question 3: Confidence intervals for regression estimates

Remember that a confidence interval is calculated as point estimate ± ME and the degrees of freedom associated with the slope in a simple linear regression is n - 2. Which of the below is the correct 95% confidence interval for the slope parameter? (Note that the model is based on observations from 53 twins).

	estimate	std.error	t-value	p-value
(Intercept)	9.0867	6.9203	1.3130	0.1950
twin_a	0.9074	0.0700	12.956	0.0000

- (a) 9.0867 ± 1.65 x 6.9203
- (b) .9074 ± 2.01 x .0700
- (c) $.9074 \pm 1.96 \times .0700$
- (d) 9.0867 ± 1.96 x .0700

n = 53 *df* = 53 - 2 = 51

- 95%: t₅₁* = 2.01
- 0.9074 ± 2.01 x 0.0700
- (0.767, 1.05)

Inference for linear regression

Inference for the slope for a single-predictor linear regression model:

Hypothesis test:
$$T = \frac{b_1 - null \ value}{SE_{b_1}}$$
 $df = n - 2$

Confidence interval: $b_1 \pm t^{\star}_{df=n-2}SE_{b_1}$

The null value is often 0 since we are usually checking for **any** relationship between the explanatory and the response variable.

The regression output gives b_1 , SE_{b1} , and **two-tailed** p-value for the t-test for the slope where the null value is 0.

We rarely do inference on the intercept, so we'll focusing on the slope.

- 1. A regression model's slope codes the relationship between the two measures
- 2. Correlation is equivalent to the slope of a regression for standardized values
- 3. Inference for regression parameters uses t-tests