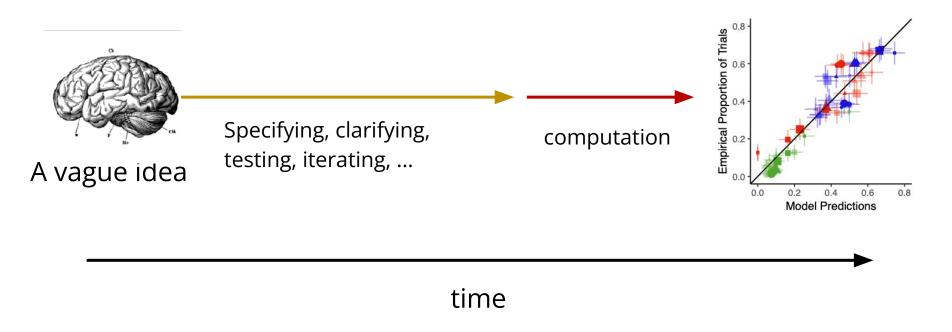
Unit 1: Introduction to Data


4. Using the tidyverse

1/31/2022

Key ideas

- 1. R is an awesome language for rapid prototyping
- dplyr verbs are a useful framework for transforming data (munging)
- Every r chunk is a paragraph, every line of code is a sentence, pipes are periods.

From an idea to a statistical model

We should optimize for human thought, not computation

From an idea to a statistical model

R has most of the features you know and love:

- Iterative control structure (e.g. for, while)
- Functional programming (e.g. map)
- Objects (e.g. structure)

But, the best thing about R (in my opinion) is the suite of packages in the tidyverse

Very basics of R	
	This is
foo <- "hello"	You ca

s how you assign values to variables. an use = instead of <-, but you shouldn't! The asymmetry between the sides is clearer

foo <-c(1,2,3,4)

c is for concatenate. You use it to make lists

is.character("the")

returns TRUE.

returns FALSE.

5 >= 7

magrittr: the pipe operator (%>%)

```
foo <- "hello"
bar <- paste(foo, "world")</pre>
baz <- paste(bar, "from 85309"
baz returns "hello world from 85309"
baz <- paste(paste("hello", "world"), "from 85309")</pre>
  y \leftarrow f(g(x))
```

magrittr: the pipe operator (%>%)

```
foo <- "hello"
bar <- paste(foo, "world")</pre>
baz <- paste(bar, "from 85309"</pre>
baz returns "hello world from 85309"
baz <- "hello" %>%
         paste("world") %>%
         paste("from 85309")
```


magrittr: the pipe operator (%>%)

```
leave_house(get_dressed(get_out_of_bed(wake_up(me, time =
"8:00"), side = "correct"), pants = TRUE, shirt = TRUE), car
= TRUE, bike = FALSE)
me %>%
 wake_up(time = "8:00") %>%
  get_out_of_bed(side = "correct") %>%
  get_dressed(pants = TRUE, shirt = TRUE) %>%
  leave_house(car = TRUE, bike = FALSE)
```

tibble: a human readable, general data structure

originsameaning	
origins %>%	
pull(meaning)	

Returns	c("moon",	"Tiu",	"Woden")

day	meaning
monday	moon
tuesday	Tiu
wednesday	Woden

dplyr: verbs for working with data

summarise

group_by	whatever you're going to do next, do it separately for each group.	
select	keep just a subset of the columns in a tibble	dplyr
filter	keep just the rows whose values in one or more	·

keep just the rows whose values in one or more columns match a truth condition (day == "monday")

mutate apply an operation to one or more columns

(according law etc)

(as.numeric, log, etc)

apply an operation to one or more columns that produces a single number (sum, mean, etc)

Transform Data with

Slides from "Remaster the tidyverse" by Garret Grolemund

https://github.com/rstudio-education/remaster-the-tidyverse

install.packages("babynames") library(babynames) babynames

year <dbl></dbl>	sex <chr></chr>	name <chr></chr>	n <dbl></dbl>	prop <dbl></dbl>
1880	F	Mary	7065	0.07238359
1880	F	Anna	2604	0.02667896
1880	F	Emma	2003	0.02052149
1880	F	Elizabeth	1939	0.01986579
1880	F	Minnie	1746	0.01788843
1880	F	Margaret	1578	0.01616720
1880	F	Ida	1472	0.01508119
1880	F	Alice	1414	0.01448696
1880	F	Bertha	1320	0.01352390
1880	F	Sarah	1288	0.01319605

How to isolate?

year	sex	name	n	prop
1880	М	John	9655	0.0815
1880	М	William	9532	0.0805
1880	М	James	5927	0.0501
1880	М	Charles	5348	0.0451
1880	М	Garrett	13	0.0001
1881	М	John	8769	0.081
1881	М	William	8524	0.0787
1881	М	James	5442	0.0503
1881	М	Charles	4664	0.0431
1881	М	Garrett	7	0.0001
1881	М	Gideon	7	0.0001

year	sex	name	n	prop
1880	М	Garrett	13	0.0001
1881	М	Garrett	7	0.0001
		Garrett		

select()

Extract columns by name.

```
tibble to name(s) of columns to extract (or a select helper function)
```

select()

Extract columns by name.

```
select(babynames, name, prop)
```

babynames

year	sex	name	n	prop		name	prop
1880	М	John	9655	0.0815	\rightarrow	John	0.0815
1880	М	William	9532	0.0805		William	0.0805
1880	М	James	5927	0.0501		James	0.0501
1880	М	Charles	5348	0.0451		Charles	0.0451
1880	М	Garrett	13	0.0001		Garrett	0.0001
1881	М	John	8769	0.081		John	0.081
1881	М	William	8524	0.0787		William	0.0787
1881	М	James	5442	0.0503		James	0.0503
1881	М	Charles	4664	0.0431		Charles	0.0431
1881	М	Garrett	7	0.0001		Garrett	0.0001

select() helpers

: - Select range of columns

```
select(mpg, cty:class)
```

- - Select every column but

```
select(mpg, -c(cty, hwy))
```

starts_with() - Select columns that start with...

```
select(mpg, starts_with("c"))
```

ends_with() - Select columns that end with...

```
select(mpg, ends_with("y"))
```

filter()

Extract rows that meet logical criteria.

```
filter(.data, ...)
                 one or more logical tests
  tibble to
                  (filter returns each row for
 transform
                   which the test is TRUE)
```

filter()

Extract rows that meet logical criteria.

```
filter(babynames, name == "Garrett")
```

babynames

year	sex	name	n	prop
1880	М	John	9655	0.0815
1880	М	William	9532	0.0805
1880	М	James	5927	0.0501
1880	М	Charles	5348	0.0451
1880	М	Garrett	13	0.0001
1881	М	John	8769	0.081
1881	М	William	8524	0.0787
1881	М	James	5442	0.0503

year	sex	name	n	prop
1880	М	Garrett	13	0.0001
1881	М	Garrett	7	0.0001
•••		Garrett	•••	•••

Logical tests

?Comparison

x < y	Less than
x > y	Greater than
× == y	Equal to
x <= y	Less than or equal to
× >= y	Greater than or equal to
× != y	Not equal to
x %in% y	Group membership
is.na(x)	Is NA
!is.na(x)	Is not NA

```
x <- 1
x >= 2
# FALSE
```

```
x >= 2
# FALSE TRUE TRUE
```

 $x \leftarrow c(1, 2, 3)$

```
filter(babynames, prop >= 0.08)
#
    year
           sex
                 name
                                 prop
    1880
            M
                 John
                      9655 0.08154630
            M William 9531 0.08049899
    1880
    1881
            M
# 3
                 John 8769 0.08098299
```

```
filter(babynames, name == "Sea")
#
    year
           sex
                name
                                 prop
    1982
                Sea
                        5 2.756771e-06
    1985
                Sea
                        6 3.119547e-06
 3
    1986
            M Sea
                        5 2.603512e-06
# 4
    1998
                Sea
                        5 2.580377e-06
```

Two common mistakes

1. Using = instead of ==

```
filter(babynames, name = "Sea")
filter(babynames, name == "Sea")
```

2. Forgetting quotes

```
filter(babynames, name == Sea)
filter(babynames, name == "Sea")
```

filter()

Extract rows that meet every logical criteria.

```
filter(babynames, name == "Garrett", year == 1880)
```

babynames

year	sex	name	n	prop
1880	М	John	9655	0.0815
1880	М	William	9532	0.0805
1880	М	James	5927	0.0501
1880	М	Charles	5348	0.0451
1880	М	Garrett	13	0.0001
1881	М	John	8769	0.081
1881	М	William	8524	0.0787
1881	М	James	5442	0.0503
1881	М	Charles	4664	0.0431

year	sex	name	n	prop
1880	М	Garrett	13	0.0001

Boolean operators

?base::Logic

a & b	and
a I b	or
xor(a,b)	exactly or
!a	not
()	To group tests . & evaluates before

Two more common mistakes

3. Collapsing multiple tests into one

```
filter(babynames, 10 < n < 20)
filter(babynames, 10 < n, n < 20)
```

4. Stringing together many tests (when you could use %in%)

```
filter(babynames, n == 5 \mid n == 6 \mid n == 7 \mid n == 8)
filter(babynames, n \% in\% c(5, 6, 7, 8))
```

babynames %>%
 filter(name == "Garrett", sex == "M") %>%
 select(year, prop)

year	prop
1880	0.0001
1881	0.0001
1882	0.0001
1883	0.0001
1884	0.0001
•••	

Deriving information

```
summarise() - summarise variables
group_by() - group cases
mutate() - create new variables
```

summarise()

Compute table of summaries.

babynames

year	sex	name	n	prop
1880	М	John	9655	0.0815
1880	М	William	9532	0.0805
1880	М	James	5927	0.0501
1880	М	Charles	5348	0.0451
1880	М	Garrett	13	0.0001
1881	М	John	8769	0.081
1881	М	William	8524	0.0787

total	max
348120517	99686

group_by()

Groups cases by common values.

```
babynames %>%
  group_by(sex) %>%
  summarise(total = sum(n))
```

sex	total
F	172371079
М	175749438

ungroup()

Removes grouping criteria from a data frame.

```
babynames %>%
  group_by(sex) %>%
  ungroup() %>%
  summarise(total = sum(n))
```

total 348120517

mutate()

Create new columns.

```
babynames %>%
mutate(percent = round(prop*100, 2))
```

babynames

year	sex	name	n	prop	
1880	М	John	9655	0.0815	
1880	М	William	9532	0.0805	
1880	М	James	5927	0.0501	
1880	М	Charles	5348	0.0451	
1880	М	Garrett	13	0.0001	
1881	М	John	8769	0.081	

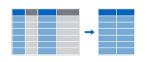
year	sex	name	n	prop	percent
1880	М	John	9655	0.0815	8.15
1880	М	William	9532	0.0805	8.05
1880	М	James	5927	0.0501	5.01
1880	М	Charles	5348	0.0451	4.51
1880	М	Garrett	13	0.0001	0.01
1881	М	John	8769	0.081	8.1

mutate()

Create new columns.

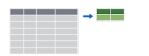
```
babynames %>%
```

mutate(percent = round(prop*100, 2), nper = round(percent))


babynames

year	sex	name	n	prop
1880	М	John	9655	0.0815
1880	М	William	9532	0.0805
1880	М	James	5927	0.0501
1880	М	Charles	5348	0.0451
1880	М	Garrett	13	0.0001
1881	М	John	8769	0.081

year	sex	name	n	prop	percent	nper
1880	М	John	9655	0.0815	8.15	8
1880	М	William	9532	0.0805	8.05	8
1880	М	James	5927	0.0501	5.01	5
1880	М	Charles	5348	0.0451	4.51	5
1880	М	Garrett	13	0.0001	0.01	0
1881	М	John	8769	0.081	8.1	8

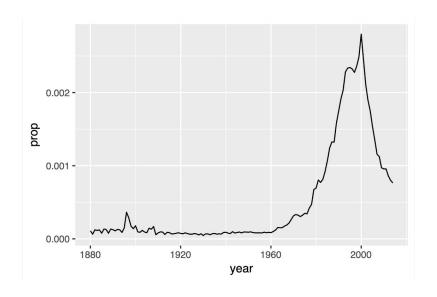

Recap: Single table verbs

Extract variables with **select()**

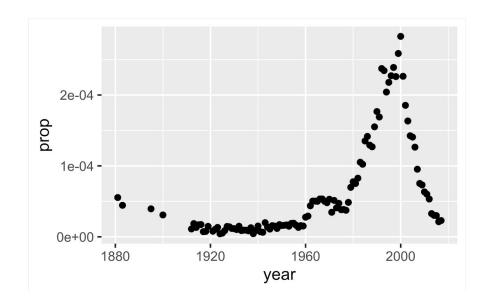
Extract cases with filter()

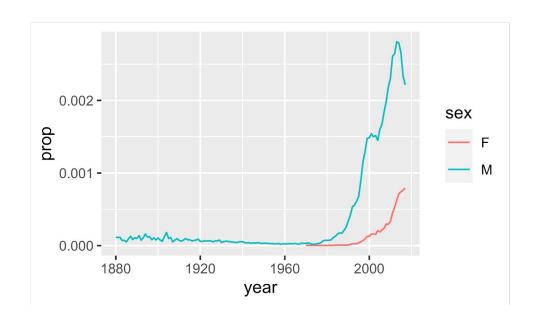
Make tables of summaries with **summarise()**.

Make new variables, with **mutate()**.


ggplot2: A grammar of graphics

ggplot()


Key idea: You can compose a plot the same way you compose a sentence by following a grammar.


```
babynames %>%
  filter(name == "Garrett", sex == "M") %>%
  ggplot(aes(x = year, y = prop) +
    geom_line()
```



```
babynames %>%
  filter(name == "Garrett", sex == "M") %>%
  ggplot(aes(x = year, y = prop) +
    geom_point()
```



```
babynames %>%
filter(name == "Parker") %>%
ggplot(aes(x = year, y = prop, color = sex) +
    geom_line()
```


Key ideas

- 1. R is an awesome language for rapid prototyping
- 2. dplyr verbs are a useful framework for transforming data (munging)
- Every r chunk is a paragraph, every line of code is a sentence, pipes are periods.