5. Perceptrons 9/15/2020

Unit 1: Simple Neural Networks

Perceptrons

1. Simple neural networks generalize the Rescorla-Wagner model of associative learning

2. Perceptrons are general-purpose linear classifiers. They can solve lots of problems

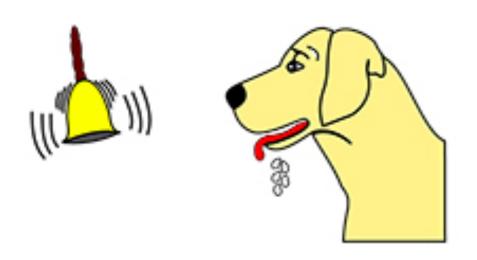
3. But they can't solve all problems...

Classical conditioning

Unconditioned Stimulus (US)

Unconditioned Response (UR) Unconditioned Stimulus (US) + Conditioned Stimulus (CS)

Unconditioned Response (UR)



Conditioned Stimulus (CS)

Conditioned Response (CR)

The Rescorla-Wagner model: Learning is prediction error

 $P(cheese) = V_{total}$

On each trial, the rat predicts whether or not it will get cheese

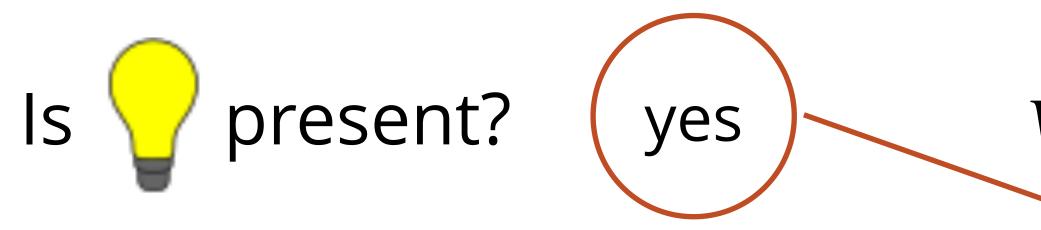
This prediction comes from the combination of all cues

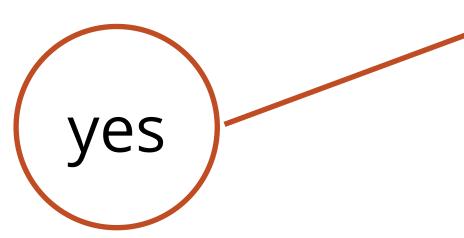
After each trial, update predictions for each cue

- If the rat gets cheese—but *didn't expect* cheese increase prediction for each cue
- If the rat doesn't get cheese—but expected cheese decrease prediction for each cue
- Otherwise, don't change anything

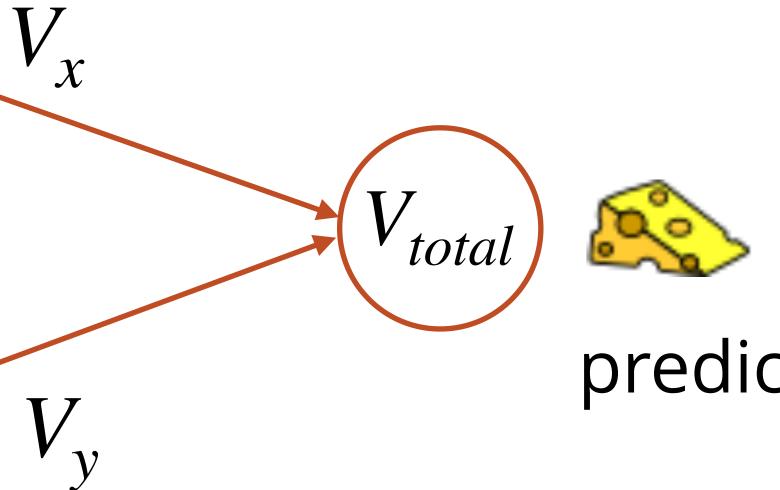
$$\Delta V = \alpha \cdot \left(\lambda - V_{total}\right)$$

A network representation of Rescorla-Wagner

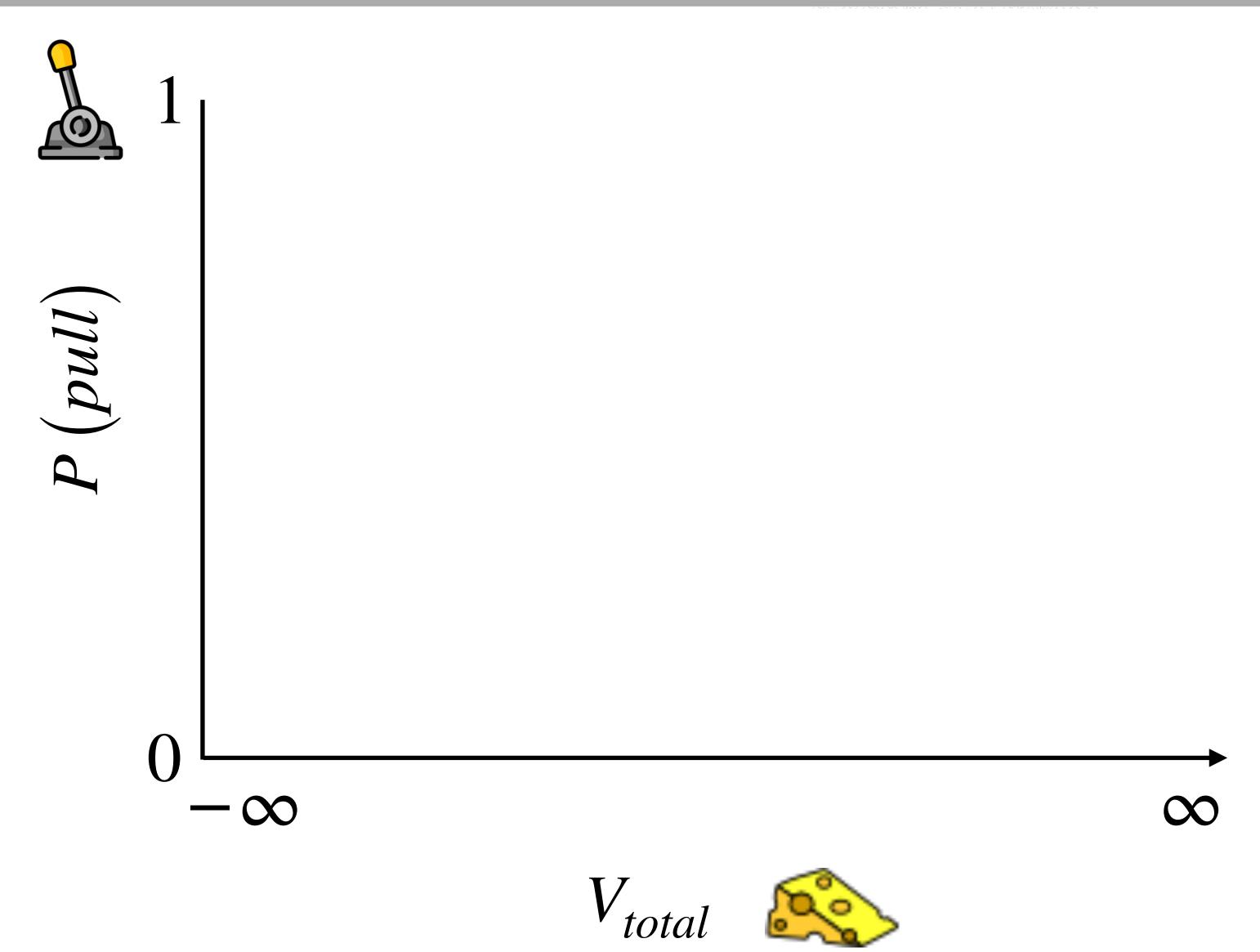




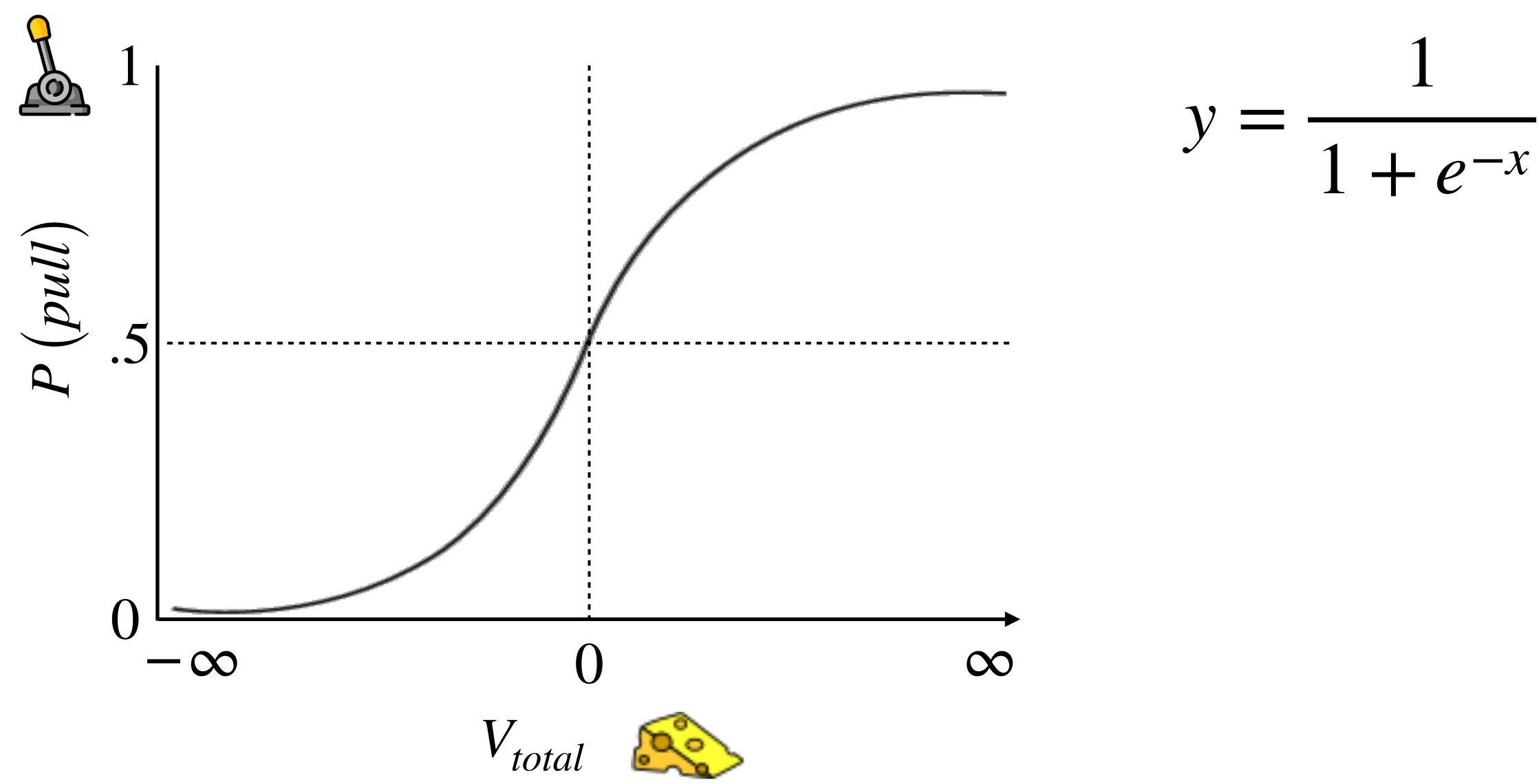
Like Ramscar et al. (2010)



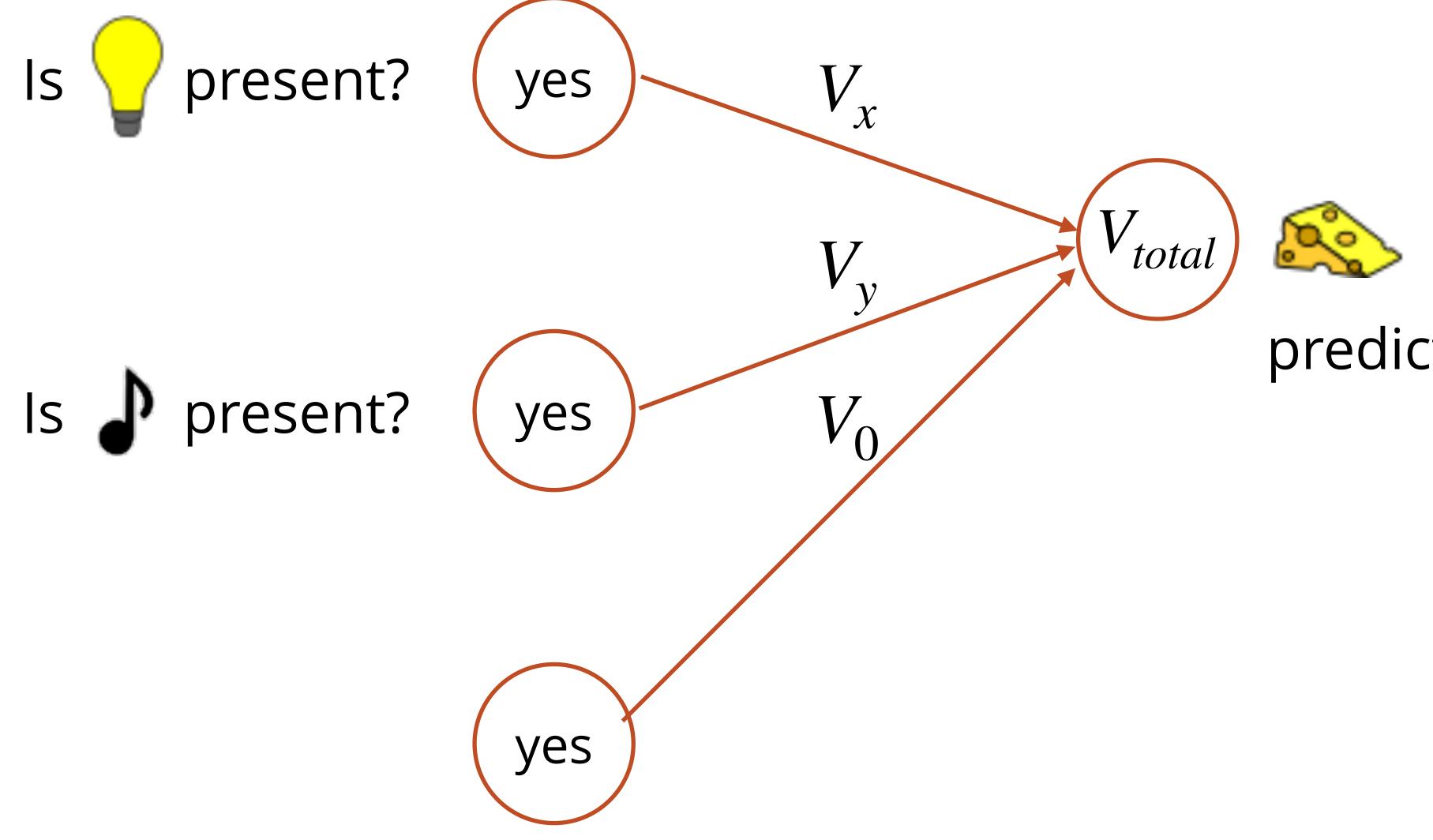
Modification 1: Connecting prediction to action with a squashing function



The sigmoid (logistic) function

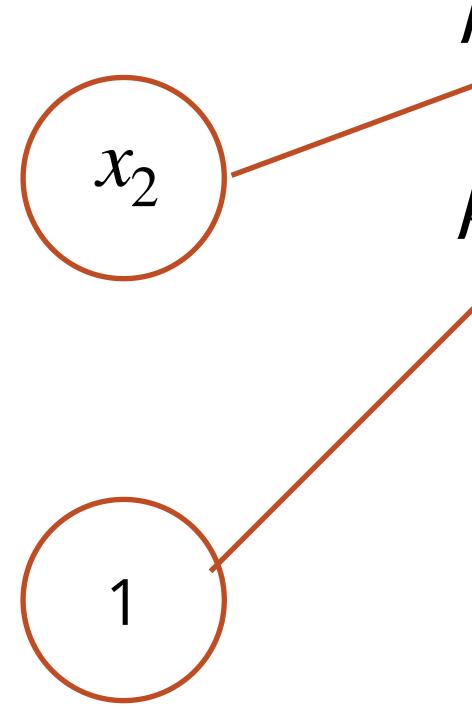


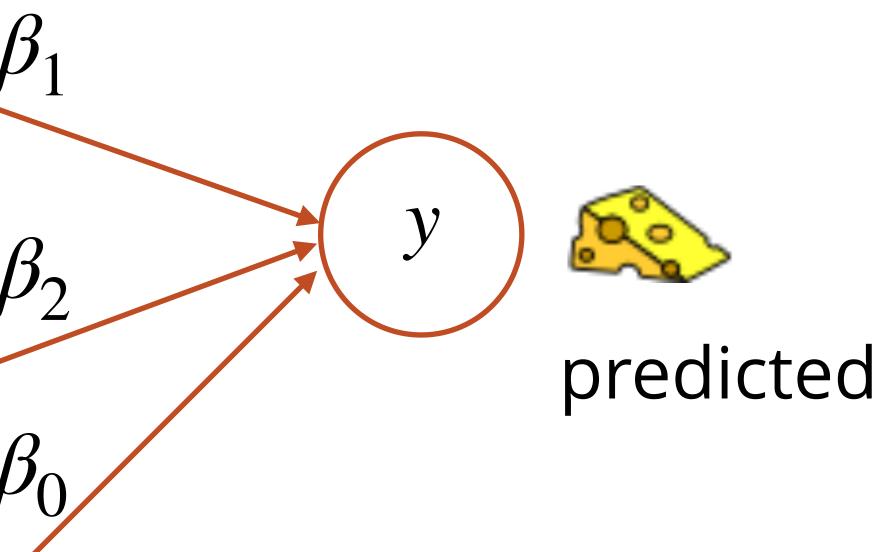
Modification 2: a bias term



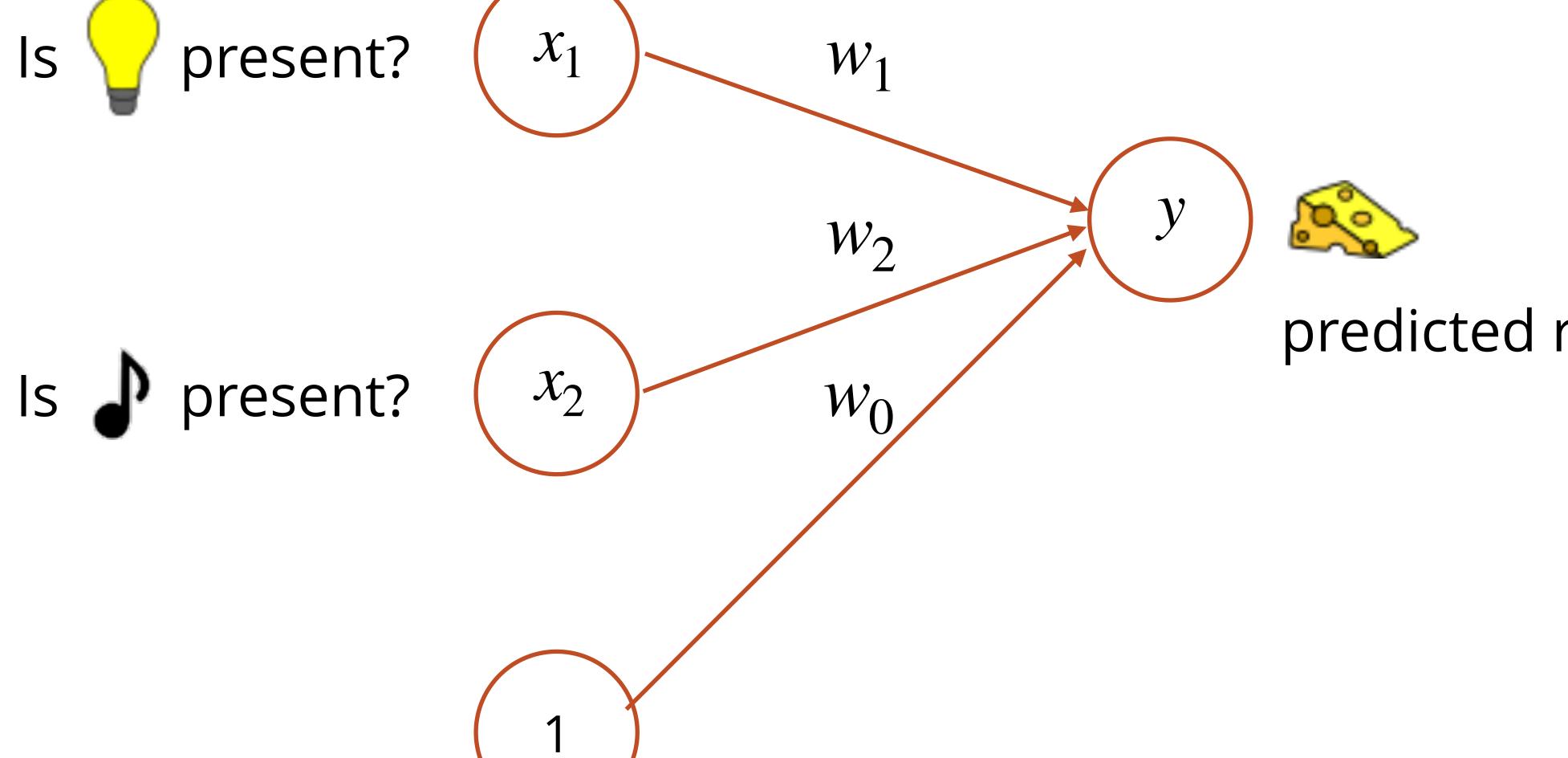
Aside: This is exactly logistic regression!

Is J present?

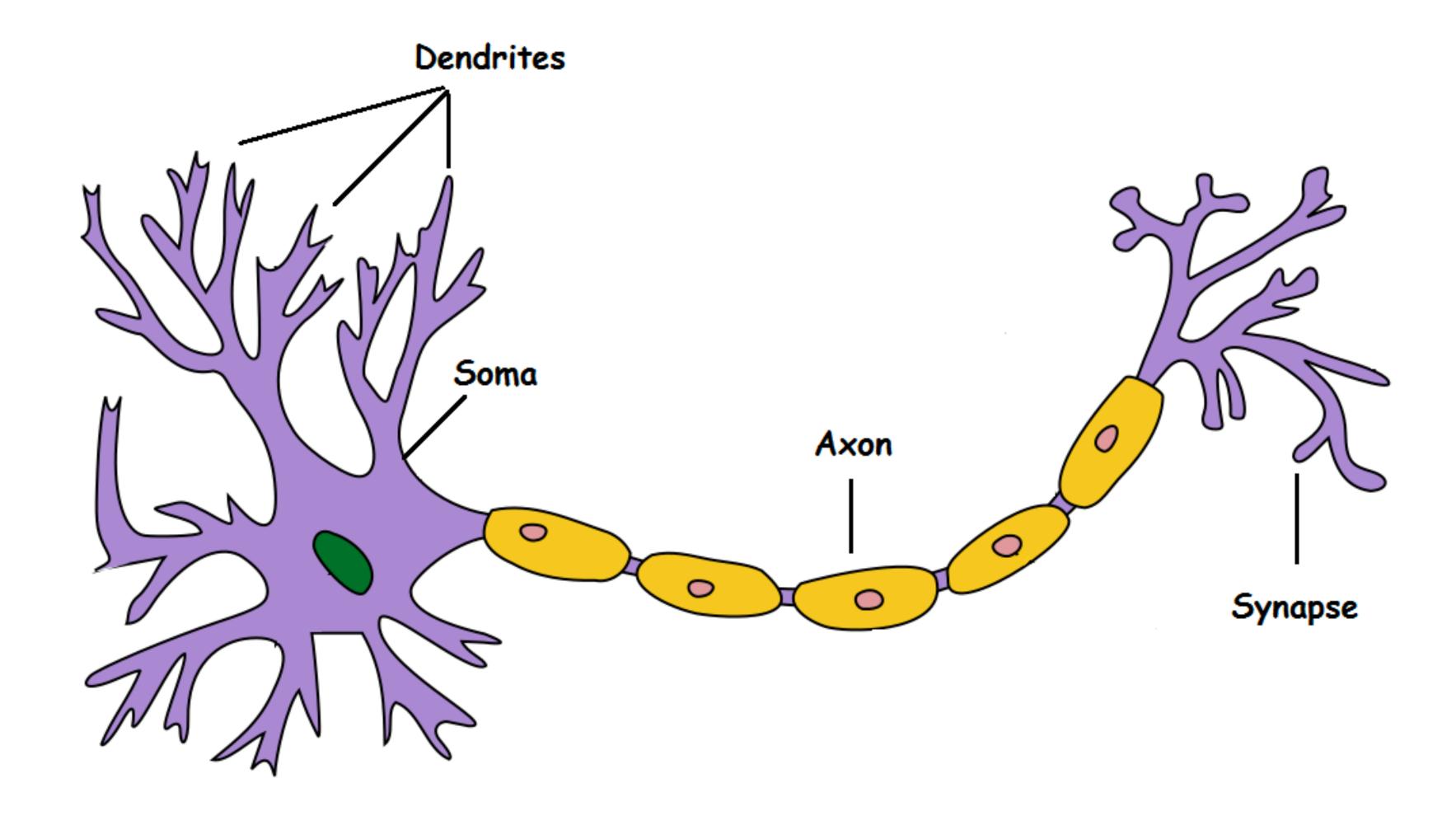




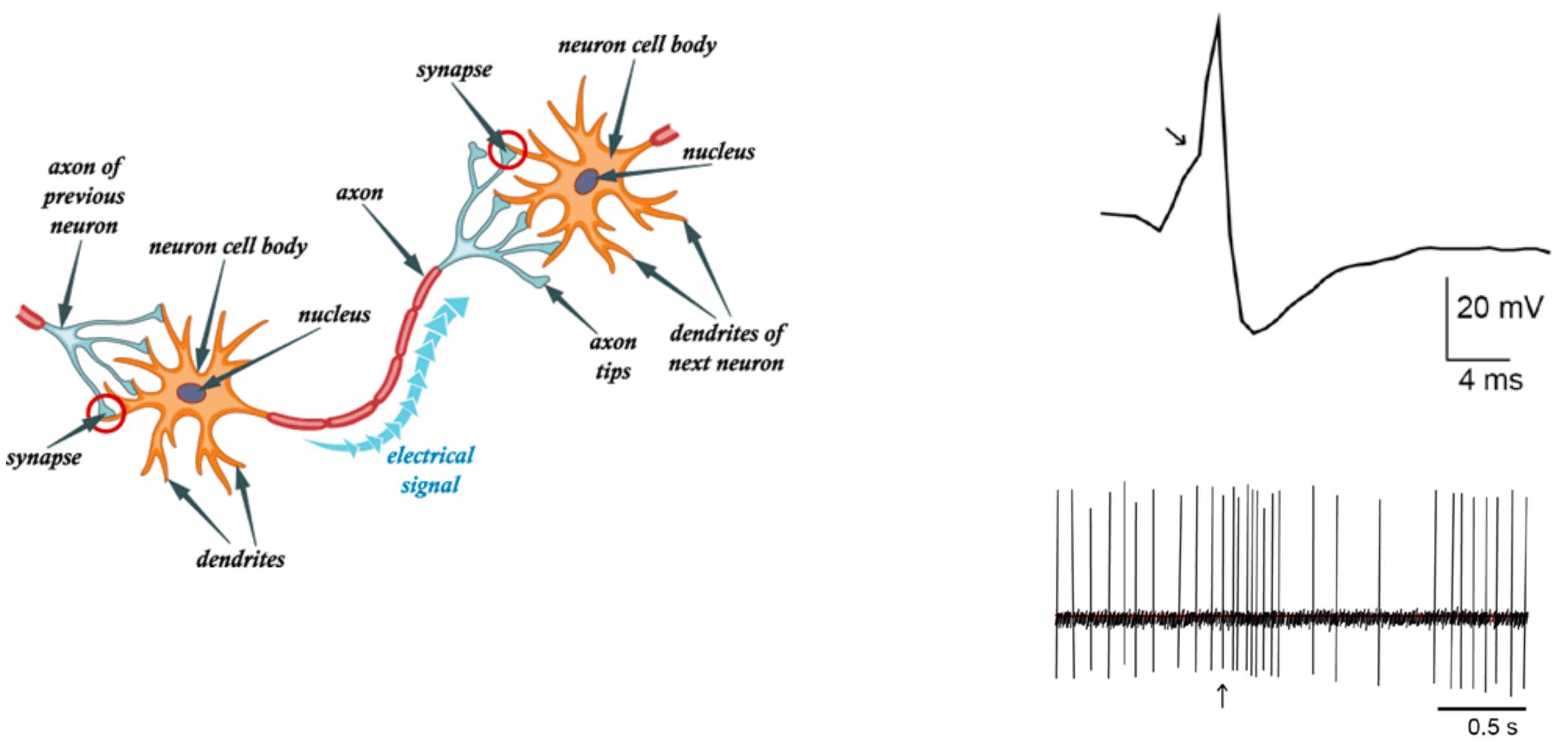
It's also a very simple model of a neuron



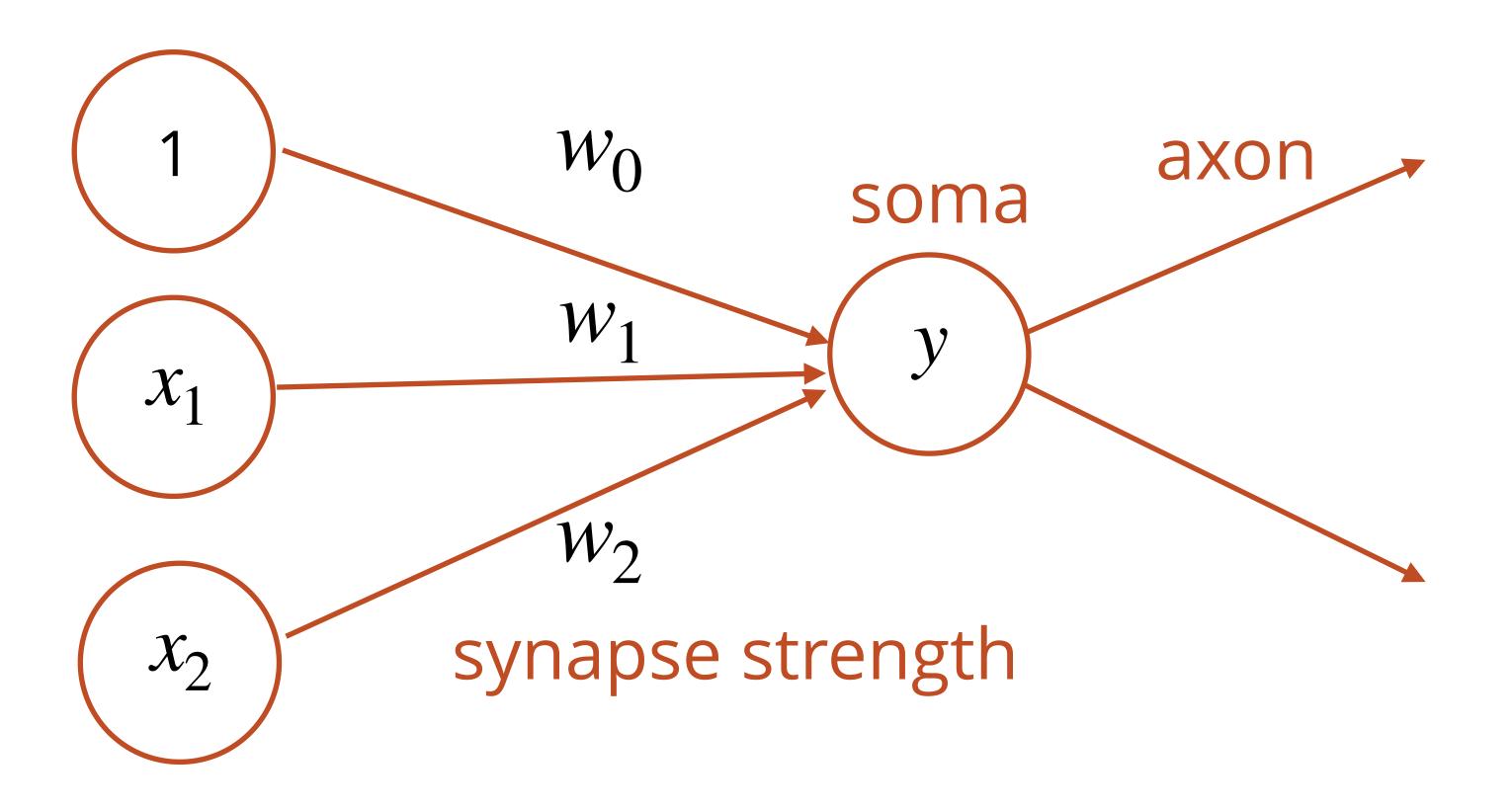
A biological neuron



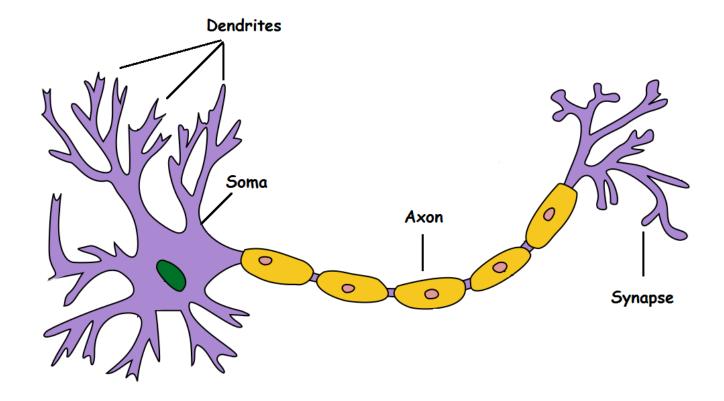
A biological neuron



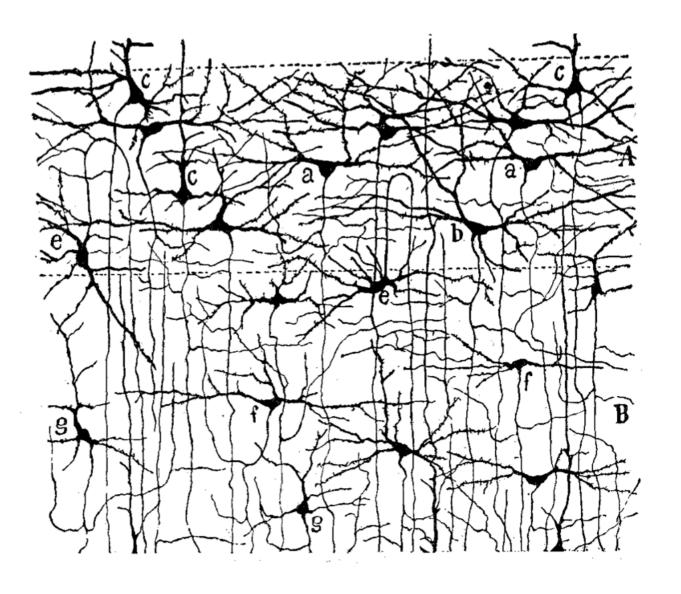
An artificial neuron

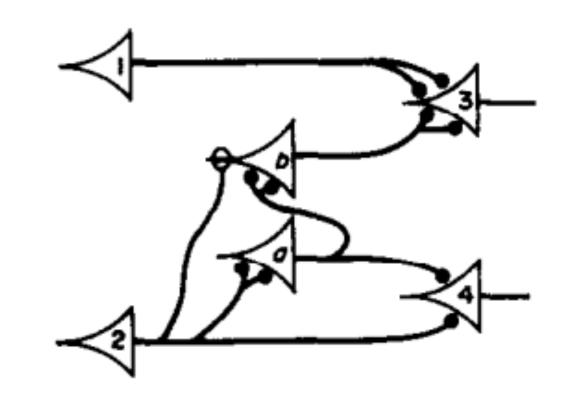


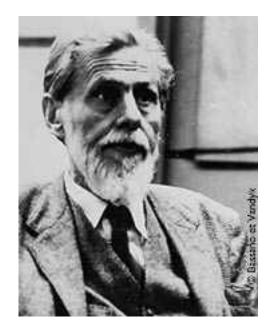
Input neuron



The first artificial neural networks





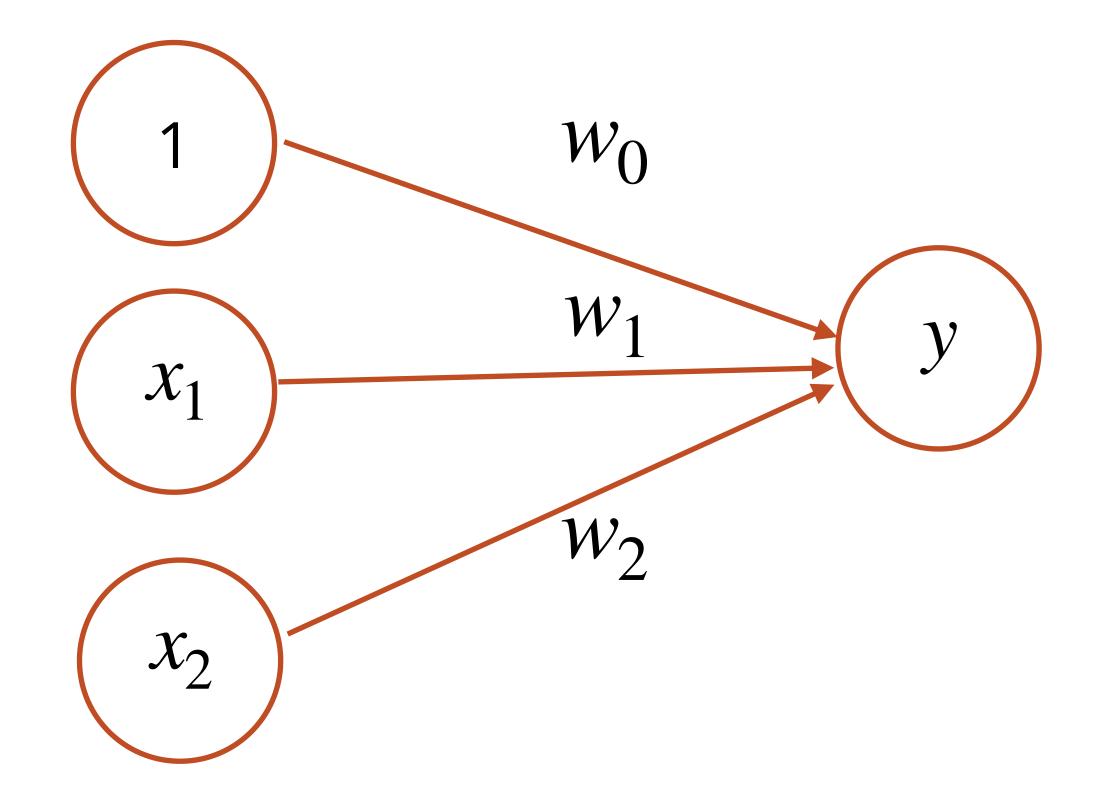


Because neuronal firing is discrete, neural networks can approximate boolean logic!

What's more, they can *learn* to do logic

Walter Pitts

The Perceptron learning rule (Rosenblatt, 1958)



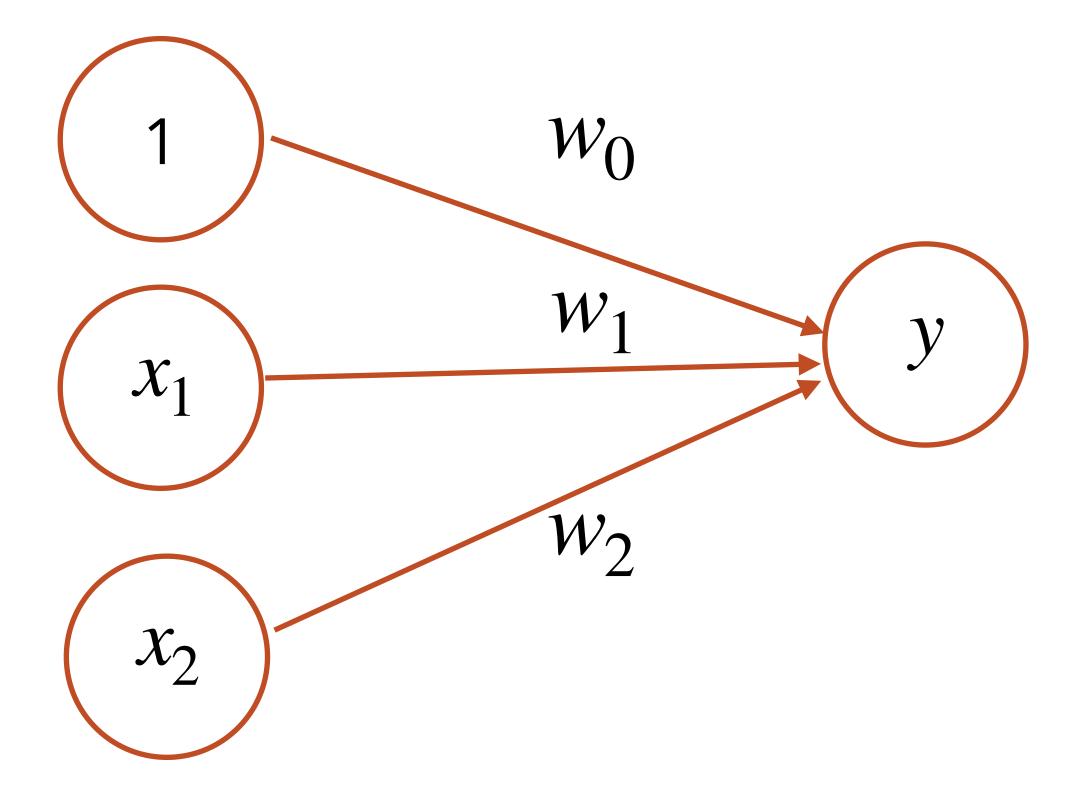
Perceptron learning rule

Rescorla-Wagner learning rule

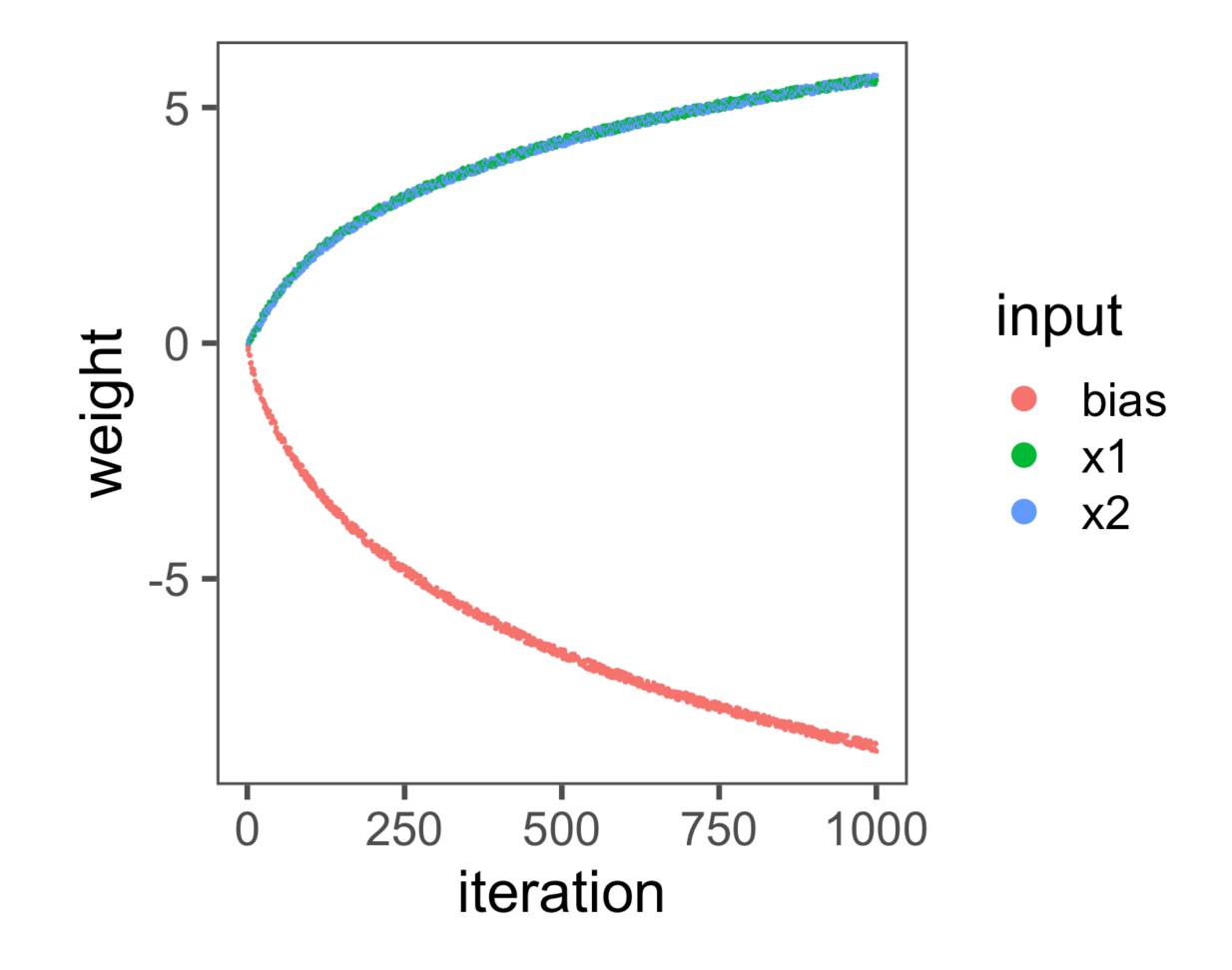
 $f(x) = \frac{1}{1 + e^{-x}}$ $y = f \sum w_i \cdot x_i$ $\Delta w_i = \alpha \cdot (y - \hat{y}) x_i$

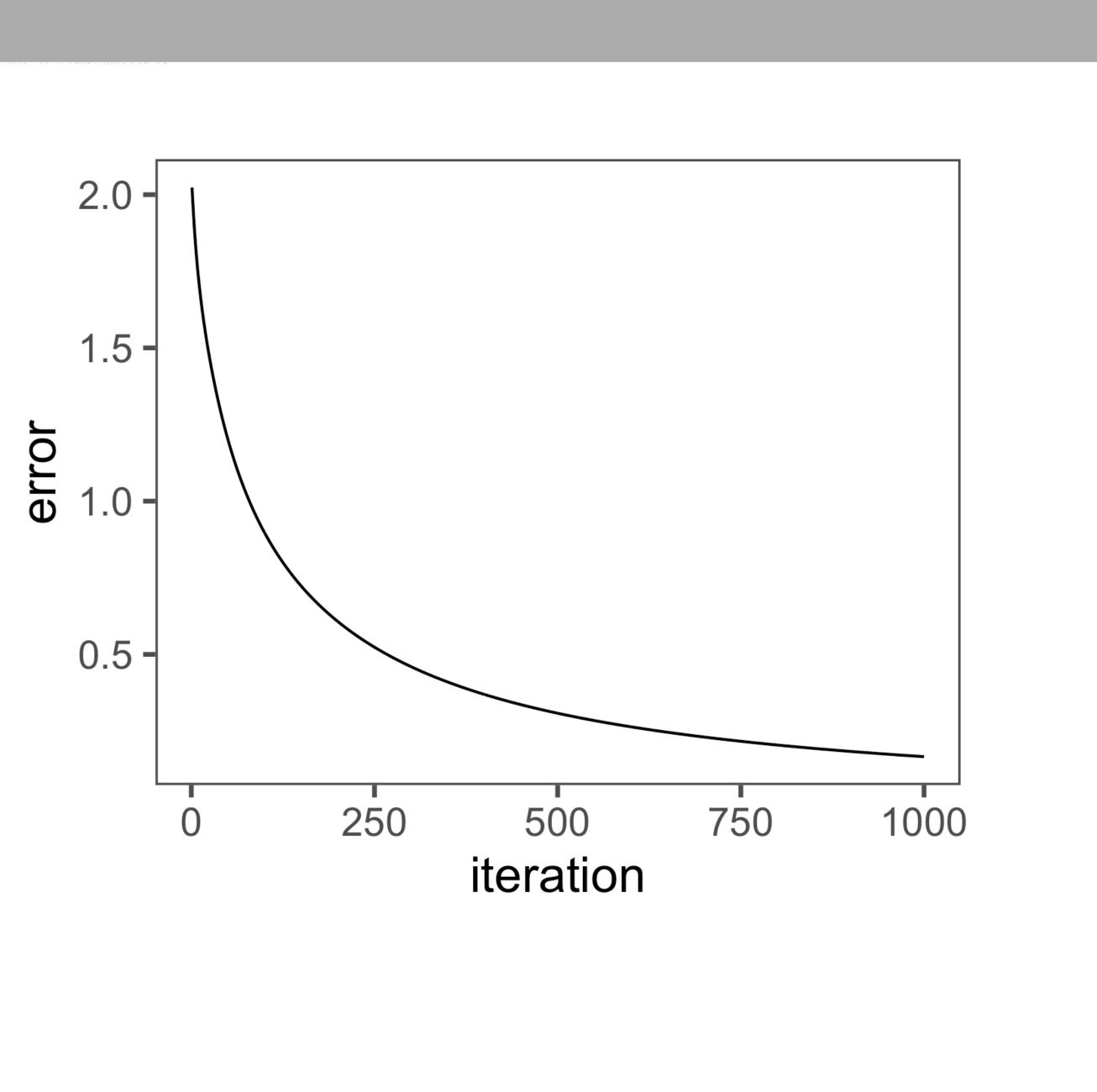
 $\Delta V = \alpha \cdot \left(\lambda - V_{total}\right)$

Building an AND network

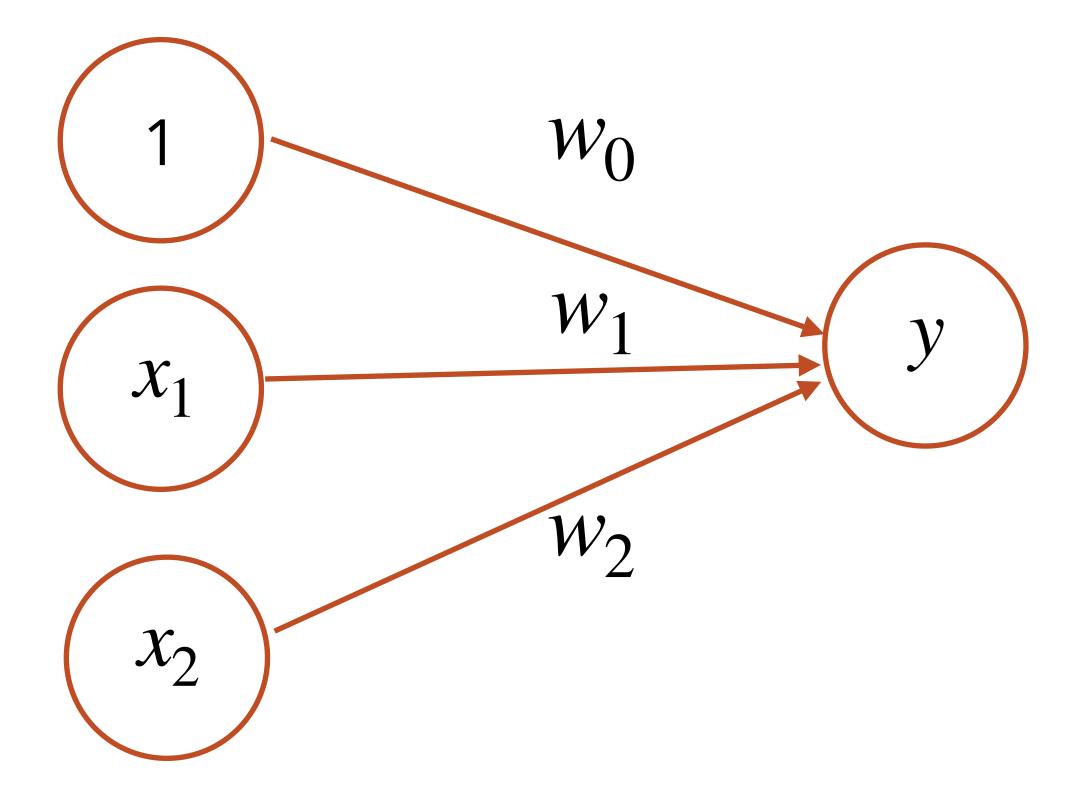


Learning the AND function

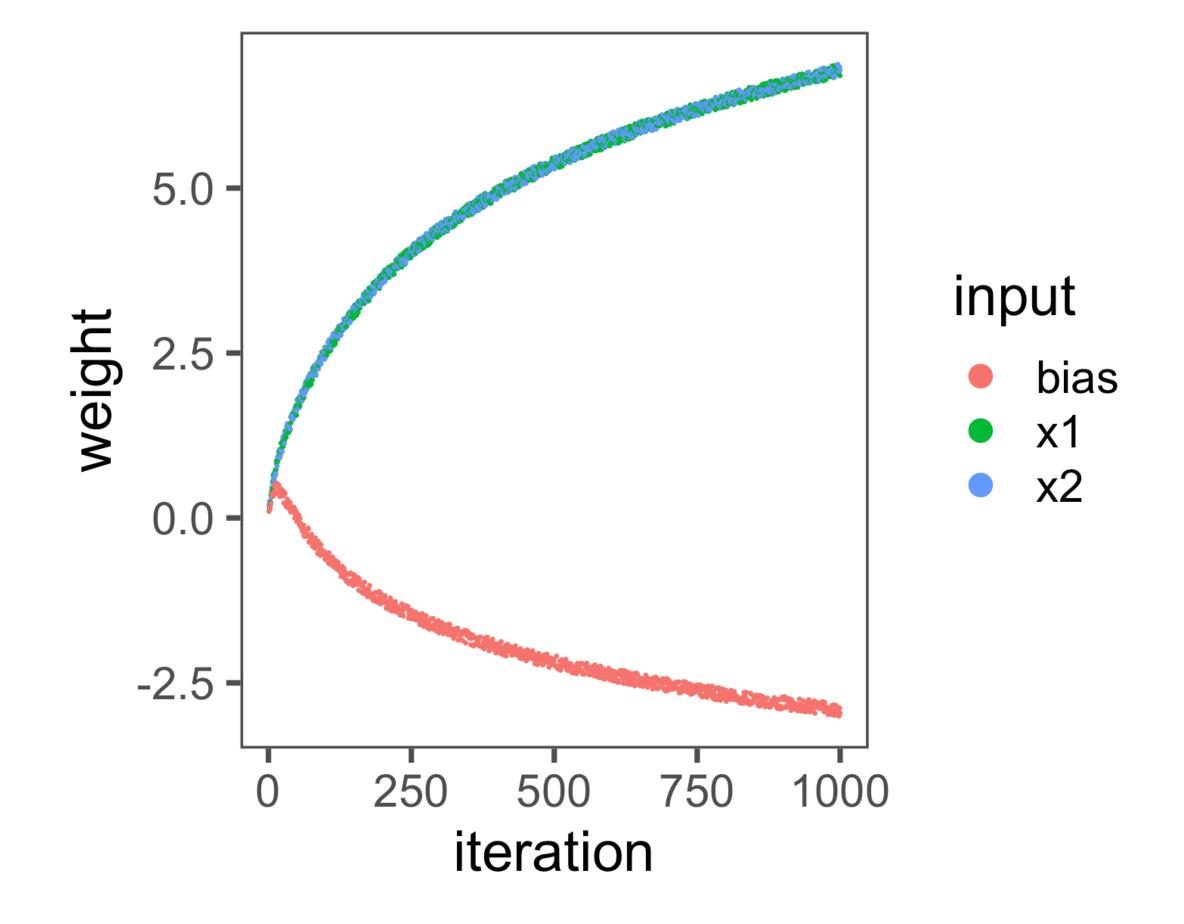


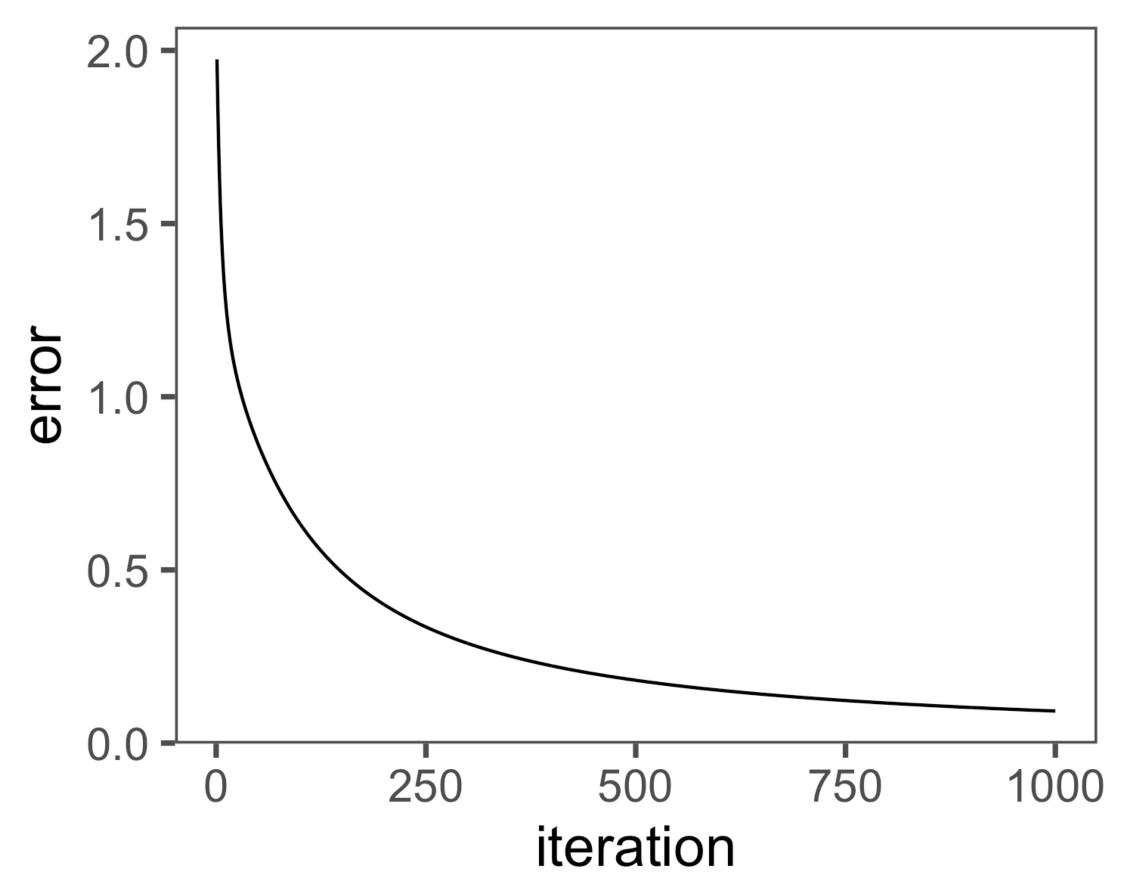


Building an OR network

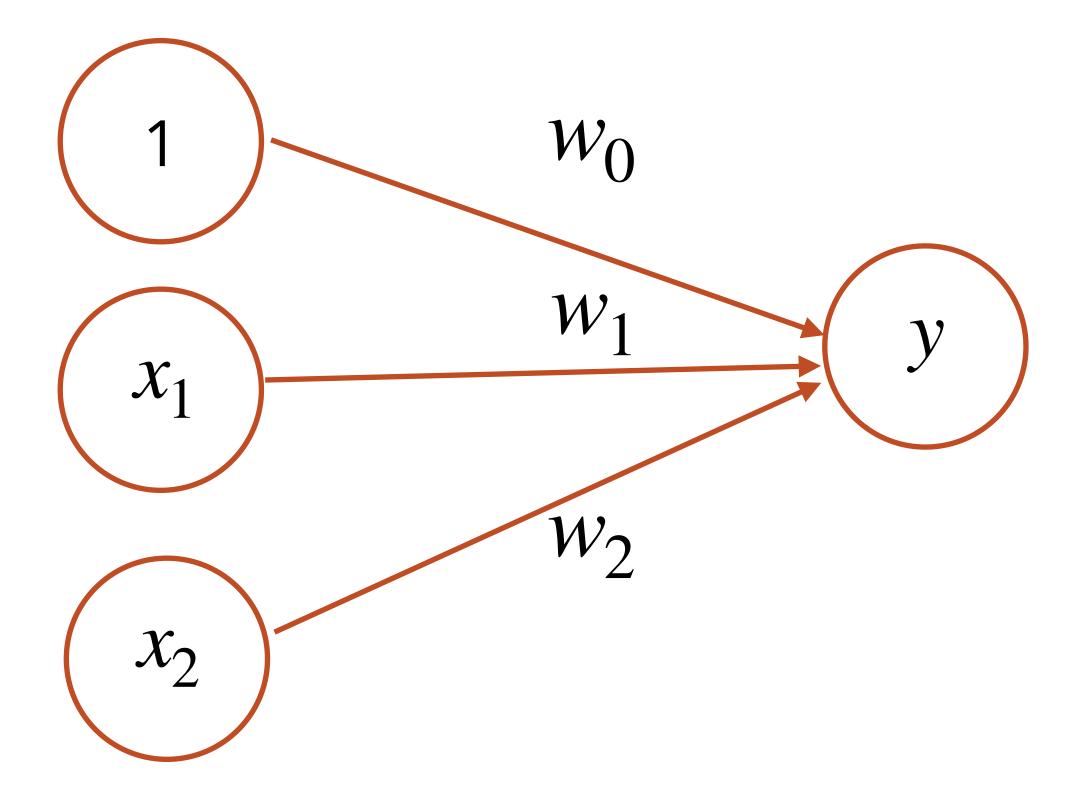


Learning the OR function

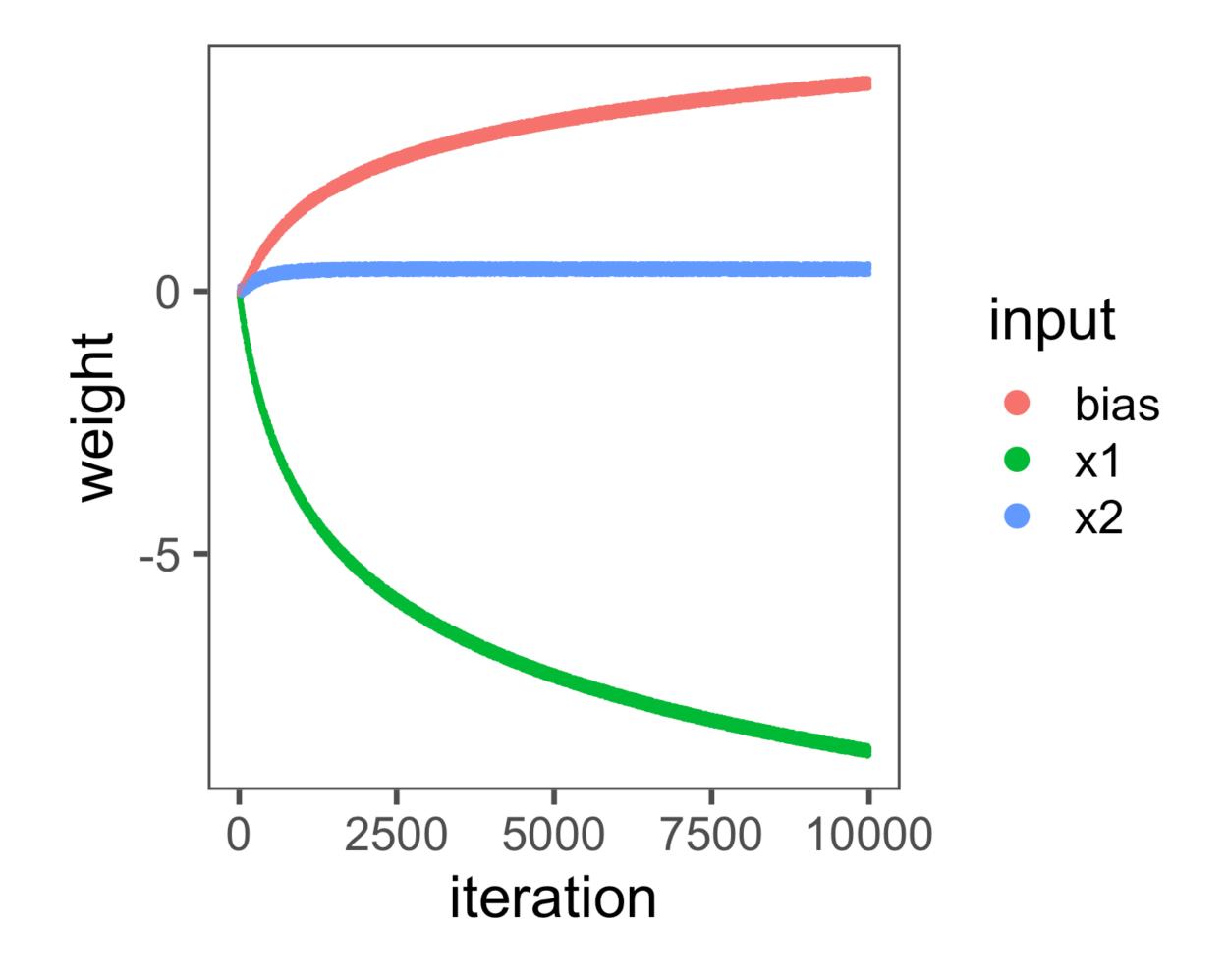


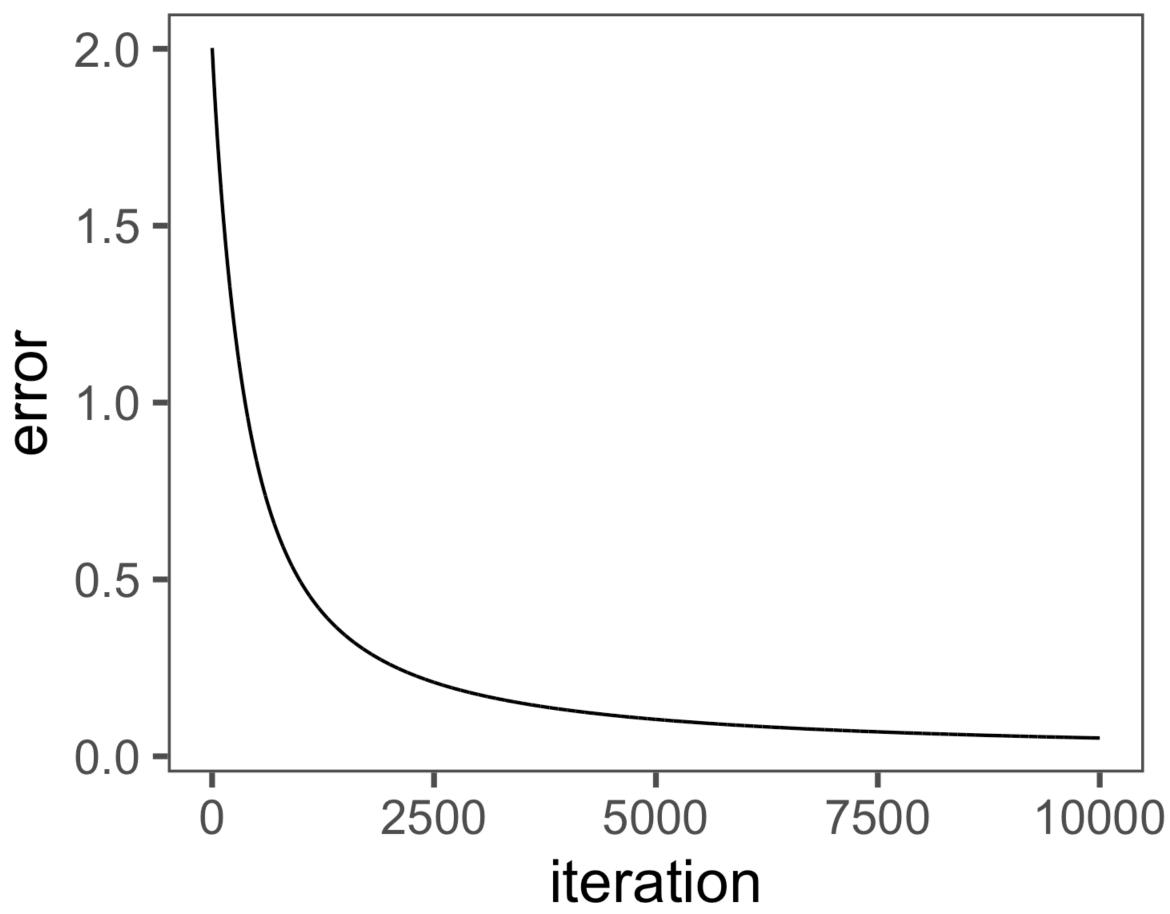


Building a NOT(x1) network



Learning the NOT(x) function





Perceptrons as general classifiers

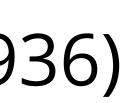
iris virginica

iris versicolor

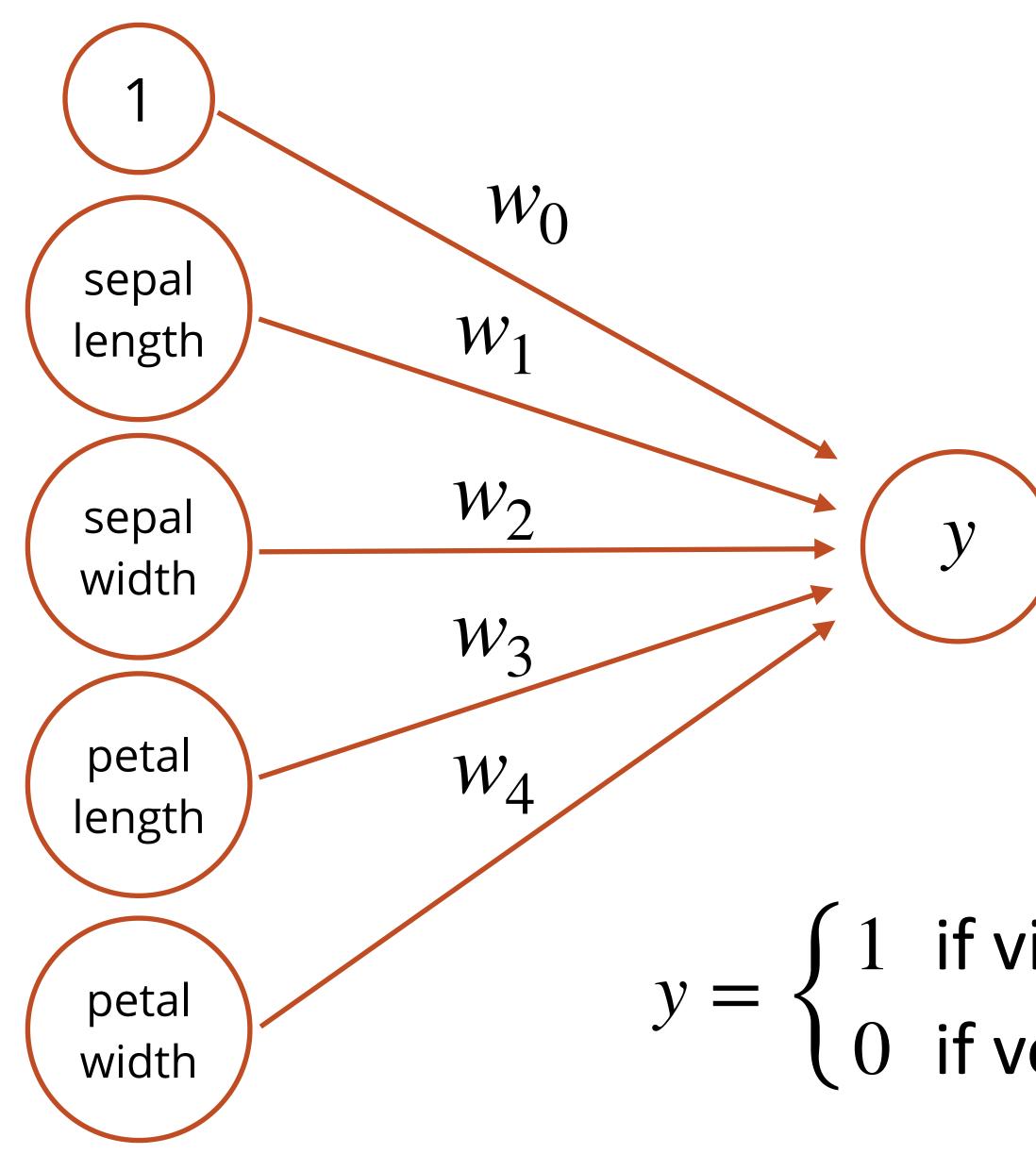
Sepal.Length		
7		
6.4		
6.9		
5.5		
6.5		
5.7		
6.3		
4.9		
6.6		
5.2		
5		

Sepal.Width 🔷	Petal.Length 🔷	Petal.Width 🔷	Species
3.2	4.7	1.4	0
3.2	4.5	1.5	0
3.1	4.9	1.5	0
2.3	4	1.3	0
2.8	4.6	1.5	0
2.8	4.5	1.3	0
3.3	4.7	1.6	0
2.4	3.3	1	0
2.9	4.6	1.3	0
2.7	3.9	1.4	0
2	3.5	1	0

Fisher (1936)

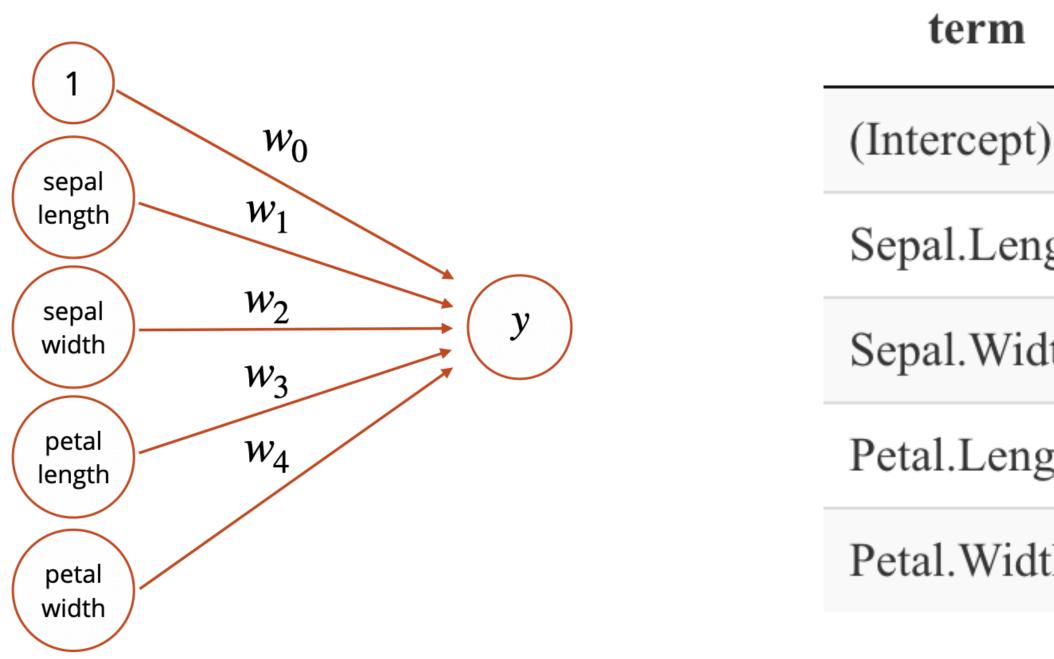


Building an iris classifier



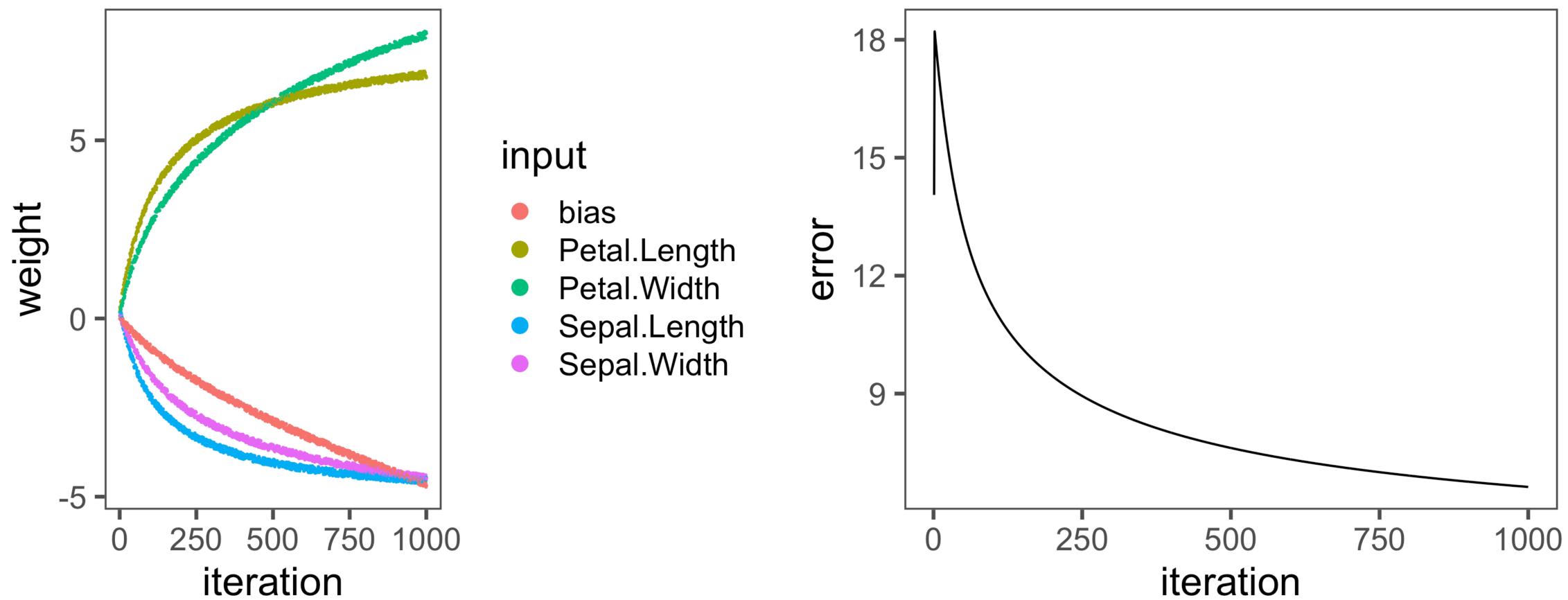
1 if viriginica,
0 if versicolor

Logistic regression as an iris classifier

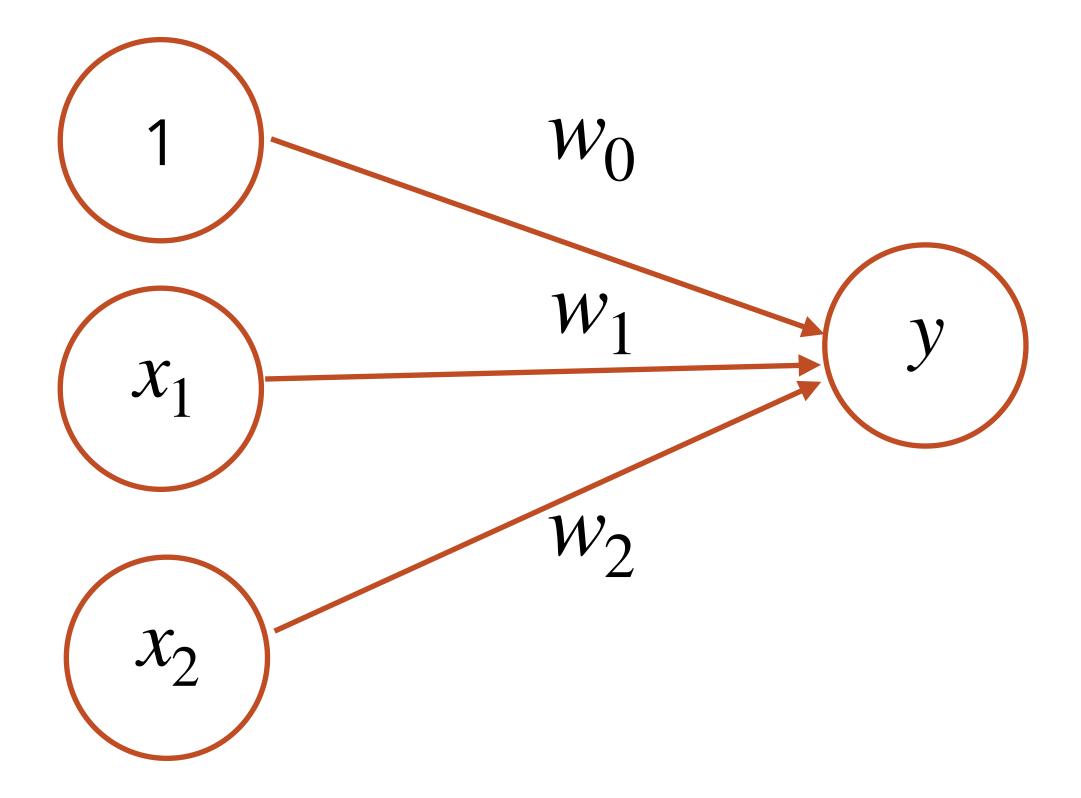


∎	estimate 🔶	std.error 🔶	statistic 🔷	p.value
ot)	-42.638	25.707	-1.659	.097
ngth	-2.465	2.394	-1.030	.303
idth	-6.681	4.480	-1.491	.136
ngth	9.429	4.737	1.991	.047
dth	18.286	9.743	1.877	.061

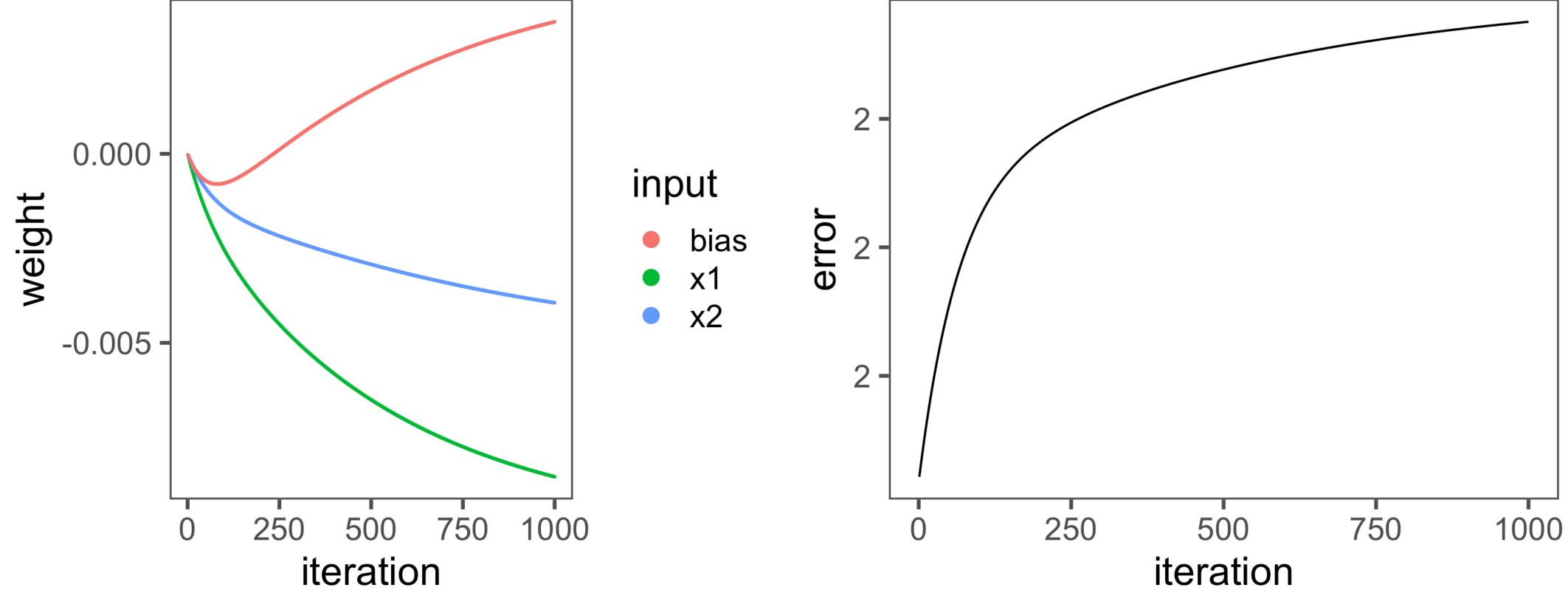
Learning an iris classifier



Building an XOR network



Learning the XOR function

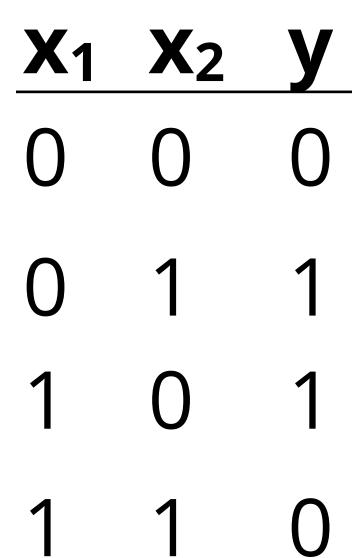


Why can't this network learn XOR?

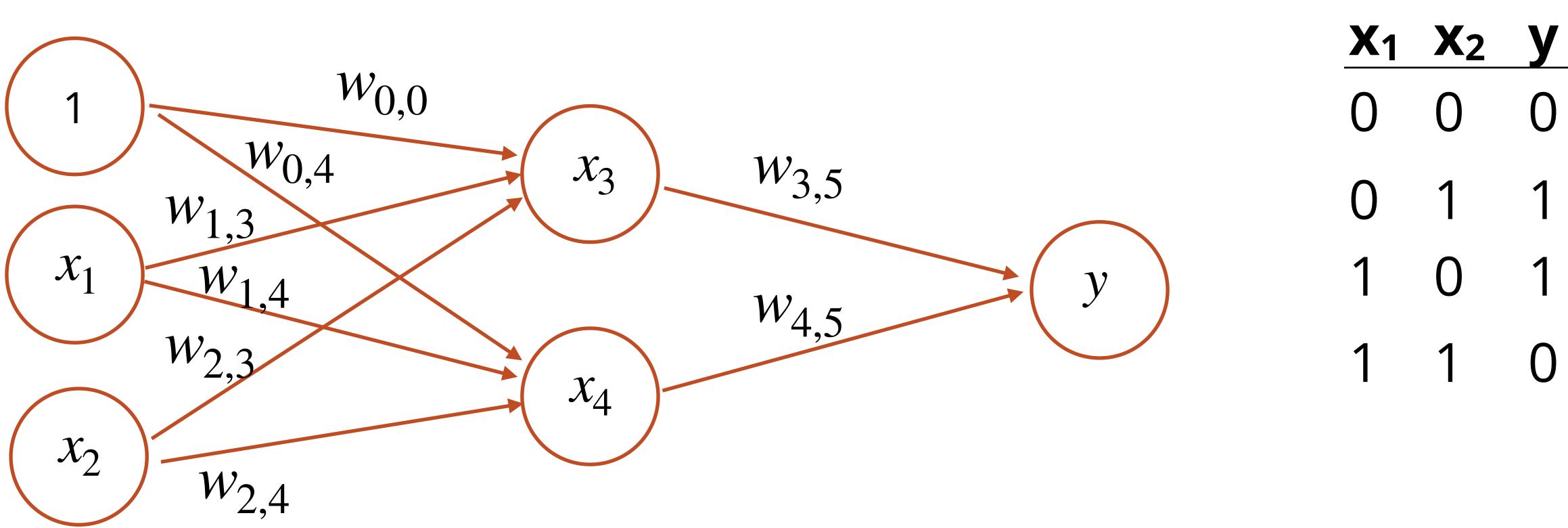
How would regression solve xor?

$glm(y \sim x_1 + x_2, family = "binomial")$

$glm(y \sim x_1 \ast x_2, family = "binomial")$ Need an x₁x₂ term!



How would a network solve xor?



Perceptrons

1. Simple neural networks generalize the Rescorla-Wagner model of associative learning

2. Perceptrons are general-purpose linear classifiers. They can solve lots of problems

3. But they can't solve all problems...