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5. Perceptrons



Perceptrons

1. Simple neural networks generalize the Rescorla- 
   Wagner model of associative learning 

2. Perceptrons are general-purpose linear classifiers.  
   They can solve lots of problems 

3. But they can’t solve all problems…
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The Rescorla-Wagner model: Learning is prediction error

ΔV = α ⋅ (λ − Vtotal)P (cheese) = Vtotal

On each trial, the rat predicts whether or not it will get cheese

This prediction comes from the combination of all cues

After each trial, update predictions for each cue 
• If the rat gets cheese—but didn’t expect cheese—

increase prediction for each cue 

• If the rat doesn’t get cheese—but expected cheese— 
decrease prediction for each cue 

• Otherwise, don’t change anything



A network representation of Rescorla-Wagner
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Modification 1: Connecting prediction to action with a squashing function
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The sigmoid (logistic) function
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Modification 2: a bias term
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Aside: This is exactly logistic regression!
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It’s also a very simple model of a neuron
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A biological neuron



A biological neuron



An artificial neuron
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The first artificial neural networks

Warren McCulloch Walter Pitts

Because neuronal 
firing is discrete, 
neural networks can 
approximate 
boolean logic!

What’s more, they 
can learn to do logic



The Perceptron learning rule (Rosenblatt, 1958)
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Δwi = α ⋅ (y − ̂y) xi

ΔV = α ⋅ (λ − Vtotal)

Perceptron learning rule

Rescorla-Wagner learning rule



Building an AND network
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Learning the AND function



Building an OR network
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Learning the OR function



Building a NOT(x1) network
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Learning the NOT(x) function



Perceptrons as general classifiers

iris virginica 

iris versicolor Fisher (1936)



Building an iris classifier
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Logistic regression as an iris classifier

glm(Species ~ Sepal.Length + Sepal.Width   
              + Petal.Length + Petal.Width,  
              family = “binomial”)



Learning an iris classifier 



Building an XOR network
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Learning the XOR function



Why can’t this network learn XOR?



How would regression solve xor?

x1 x2 y 
0 0 0
0 1 1
1 0 1
1 1 0

glm(y ~ x1 + x2, family = “binomial”)

glm(y ~ x1 * x2, family = “binomial”)

Need an x1x2 term!



How would a network solve xor?
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Perceptrons

1. Simple neural networks generalize the Rescorla- 
   Wagner model of associative learning 

2. Perceptrons are general-purpose linear classifiers.  
   They can solve lots of problems 

3. But they can’t solve all problems…


