Unit 1: Simple Neural Networks

6. Multi-layer networks
9/17/2020



1. Dynamics of neural networks can capture features
of human information processing

2. Backpropagation is a general algorithm for learning
In multi-layer networks

3. Neural networks can give rise to “emergent”
learning phenomena



Single layer perceptrons are linear classifiers




Multi-layer perceptrons are non-linear classifiers

Intuition: Hidden layer nodes can encode arbitrary
interactions between input layers



Who cares?

Why not just use regression?

Are there any inherent reasons to be
Interested in networks?



"A physical symbol system has the necessary and sufficient
means for general intelligent action”
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Newell and Simon (1976)


https://en.wikipedia.org/wiki/Sufficient
https://en.wikipedia.org/wiki/Sufficient

1.The brain is a computer that manipulates symbols

2.You can distinguish between the hardware (neurons) and
software (knowledge)

3.In principle, this intelligence software can be run on many
different kinds of hardware, including potentially desktop
computers (functionalism)

4.0ur goal as cognitive scientists is to understand the
software. Who cares about the hardware?



If you can define a search space of
transformations, a start state, and
an ends state, the algorithm can
determine how to find the goal

Problem: How do you get this
search space?
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1. Each unit of the network is a simple computer, but the
network as a whole can give rise to complex
phenomena.

2. The framework is general—you don’t need a separate
model for every domain (sort of).

3. Blurs the hardware/software distinction



The word superiority effect (Reicher, 1969)




The word superiority effect (Reicher, 1969)

COURSE




The word superiority effect (Reicher, 1969)
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Naive model of word processing: (@
You first perceive visual features,

These features are used to recognize letters, (',
You combine letters to recognize words (@

Key claim of the IAM:

All of these processing steps happen in
parallel, and interact with each-other I”

VISUAL INPUT



Inhibitory connections

within-levels

If the first letteris T, itisn't A
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The IAM predicts the Word Superiority Effect

activation

letter level activations

1.00, -

output values



Do you get the Word Superiority Effect for non-words?

Try out some words
and non-words in
the app.

Compare, e.g.
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www.psychology.nottingham.ac.uk/staff/wvh

jIAM: Interactive Activation Models in JavaScript
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Using the Interactive Activation Model app

Switch between seeing words
and letters, specity which letter

B
4
-
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\ Change input

nttps://waltervanheuven.net/jiam/index.ntml and run



Two other interesting effects

the "rich get richer” effect the "gang" effect
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Strengths

1. A complex and surprising effect arises of individual

connections with no goal
2.The dynamics of this network give rise to phenomena
about timing of information processing that are testable

Weaknesses Table | -
Parameter Values Used in the Simulations
1.Where do these weights Parameter Value
come from? Feature_lottr inhibition Is
Letter-word excitation 07
2. How does the network know Letr-word nhiiion o

Letter—letter inhibition 0

words and frequencies? Word_1otter excitatio 30




But how do we learn connections weights in a multi-layer network?




What does it mean to learn in a neural network?

We got (xl, Xz)

W
@ ’ We computed j\/ =f(WO + WiXq 1+ wlxl)

Wi
D
But we wanted to predict !
@ Now we want to change WOa Wla x2

So next time we see ()Cl, Xz)

We predict something closer to Y



Aside: Learning rates
So next time we see (Xl, xZ)
We predict something closer to Y

@ Why not predict exactly Y ?



Credit assignment in multi-layer networks

A\

If you have an error, in YV, who do you blame?

Suppose we find that X3 * W3 5 caused Y to be too high




Gradient Descent
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Credit assignment in multi-layer networks

Suppose we find that X3 - W3 5 caused Y to be too high

Want to separate error parts:
1.Error cause by Wj s

2. Error caused by X3

We're going to do this using partial derivatives



Updating one weight

Terms:
E Squared Prediction error

A5 The summed inputto X5 = Wgs+ W35 X3+ Wy5-Xy
1

] — e*s - G(XS)

iy, The activation of X5 =

oL Oxs 04, OF
Owss  Owss OXs 0d

By the chain rule



Updating one weight
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The gradient for one activation
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Backpropagation
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Semantic Cognition: Our intuitive understanding of concepts
and their properties (e.g. birds lay eggs, dogs have 4 legs)

Questions:
1. How do we know what properties a concept has and how
they should be generalized?

2. How is this knowledge acquired?

3. How does it degrade?



Concepts organized hierarchically
from general to specific

HAS
Plant » Roots Animal ()

Propositions stored once at N e
highest level to which they apply
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S HAS HAS
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St re ngt h s: Effi Ci e nt, n eW CO n Ce ptS Pine () Oak () ) Rose Daisy () Robin () Canary () () sunfish () Salmon
i n h e r it a | Ot Of i n fo r m a ti O n Green Tal  Leaves  Red  Yelow Red Sihg  Yellow Yellow Red

Weaknesses: How do you handle exceptions?
How do you know where to store a property?

From McClelland & Rogers (2003)



Network trained to answer triplet
guestions: Given item and
relation, output attributes

No explicit hierarchy

Started with random weignhts,
trained on Quillan’s data
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Learning semantic relations through backpropagation
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Key result 1: Progressive differentiation

1.2 -
[0))
21.0-
O
2 0.8
&
g 0.6 -
O - Plants vs. Animals
|_|3_| 0.4 - Birds vs. Fish
- |rees vs. Flowers
0.2 - - Robin vs. Canary
= Pine vs. Oak
0.0 1 | | | | !
0 500 1,000 1,500 2,000 2,500

Learning epochs

Broad distinctions made first

1.0 -
0.8
S
= 0.6 — Ganary-CAN-Grow
o — Canary-CAN-Move
< 0.4 — Canary-CAN-Fly
-~ Ganary-CAN-Sing
== Pine-HAS-Leaves
0.2
0.0 1 | | | | |
o) 500 1,000 1,500 2,000 2,500

Learning epochs

Broad properties learned first



Key result 2: Graceful degradation

Picture naming responses for JL
Item Sept. 91 March 92 March 93
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Noise added to representations
disrupts specific features



1. Dynamics of neural networks can capture features
of human information processing

2. Backpropagation is a general algorithm for learning
In multi-layer networks

3. Neural networks can give rise to “emergent”
learning phenomena



