6. Multi-layer networks

9/17/2020

Unit 1: Simple Neural Networks

Multi-layer networks

- 1. Dynamics of neural networks can capture features of human information processing
- 2. Backpropagation is a general algorithm for learning in multi-layer networks
- 3. Neural networks can give rise to "emergent" learning phenomena

Single layer perceptrons are linear classifiers

X1 X2 Y 0 0 0 0 1 1 1 0 1 1 1 0

Multi-layer perceptrons are non-linear classifiers

Intuition: Hidden layer nodes can encode arbitrary interactions between input layers

Who cares?

Why not just use regression?

Are there any inherent reasons to be interested in networks?

The physical symbol system hypothesis

"A physical symbol system has the necessary and sufficient means for general intelligent action"

Newell and Simon (1976)

The physical symbol system hypothesis

- 1. The brain is a computer that manipulates symbols
- 2.You can distinguish between the hardware (neurons) and software (knowledge)
- 3.In principle, this intelligence software can be run on many computers (functionalism)
- 4. Our goal as cognitive scientists is to understand the software. Who cares about the hardware?

different kinds of hardware, including potentially desktop

The General Problem Solver (1959)

If you can define a search space of transformations, a start state, and an ends state, the algorithm can determine how to find the goal

Problem: How do you get this search space?

Strengths of connectionism

- 1. Each unit of the network is a simple computer, but the network as a whole can give rise to complex phenomena.
- 2. The framework is general—you don't need a separate model for every domain (sort of).
- 3. Blurs the hardware/software distinction

COURSE

80% accuracy

85% accuracy

95% accuracy

Interactive Activation Model (McClelland & Rumelhart, 1981)

Naive model of word processing: You first perceive visual features, These features are used to recognize letters, You combine letters to recognize words

Key claim of the IAM: All of these processing steps happen in parallel, and interact with each-other

A sketch of the Interactive Activation Model

Inhibitory connections within-levels

If the first letter is T, it isn't A

Inhibitory and excitatory **connections** between-levels If the first is T, the word could TIME, but not WORK If there is growing evidence that the word is TIME, the first letter is probably T

A sketch of the Interactive Activation Model

Word frequency affects expectations

If you see T- - -, you are more likely to be reading TIME than TARP

Even if you see T- - -, you're very unlikely to be reading TPAR

A sketch of the Interactive Activation Model

ABEDEFGHI JKLMNDPQR StuvwxyZ

The IAM predicts the Word Superiority Effect

Do you get the Word Superiority Effect for non-words?

Try out some words and non-words in the app. Compare, e.g. - - V -HAVE MAVE AMVE EMVA

https://waltervanheuven.net/jiam/index.html

Using the Interactive Activation Model app

Two other interesting effects

Frequency differences get magnified over time

Similar words support each-other

Strengths and Weaknesses of the Interactive Activation Model

Strengths

1. A complex and surprising effect arises of individual connections with no goal 2. The dynamics of this network give rise to phenomena

Weaknesses

1. Where do these weights come from?

2. How does the network know words and frequencies?

about timing of information processing that are testable

Table 1 Parameter Values Used in the Simulations

Parameter	Value
Feature-letter excitation	.005
Feature-letter inhibition	.15
Letter-word excitation	.07
Letter-word inhibition	.04
Word-word inhibition	.21
Letter-letter inhibition	0
Word-letter excitation	.30

But how do we learn connections weights in a multi-layer network?

What does it mean to learn in a neural network?

So next time we see (x_1, x_2)

We predict something closer to ${\it Y}$

We got
$$(x_1, x_2)$$

omputed
$$\hat{y} = f(w_0 + w_1 x_1 + w_1)$$

But we wanted to predict y!

Now we want to change W_0, W_1, X_2

Aside: Learning rates

o next time we see
$$(x_1, x_2)$$

We predict something closer to ${\mathcal Y}$

Why not predict exactly \mathcal{Y} ?

$$\Delta w_i = \alpha \cdot (y - \hat{y}) x_i$$

Credit assignment in multi-layer networks

If you have an error, in \hat{y} , who do you blame?

Suppose we find that $x_3 \cdot w_{3.5}$ caused \hat{y} to be too high

Gradient Descent

Image from Saugat Bhattari

Gradient Descent

 w_1

Credit assignment in multi-layer networks

Suppose we find that $x_3 \cdot w_{3.5}$ caused \hat{y} to be too high

Want to separate error parts: 1. Error cause by $W_{3.5}$ 2. Error caused by χ_3

We're going to do this using partial derivatives

Updating one weight

Terms:

- Squared Prediction error E
- x_5
- The activation of $x_5 = \frac{1}{1 e^{x_5}} = \sigma(x_5)$ a_{x_5}

By the chain rule

Updating one weight

$$E = (y - a_{x^5})^{2}$$

$$1 \quad w_{0,0}$$

$$W_{0,0}$$

$$W_{0,0$$

 $\sigma'(x) = \sigma(x) \left(1 - \sigma(x)\right)$

 $x_5 = w_{6,5} + a_{w_{3,5}} \cdot a_{x_3} + w_{4,5} \cdot a_{x_4}$

The gradient for one activation

Backpropagation

 $\partial x_3 \quad \partial a_{x_3} \quad \partial E$ ∂E $\partial w_{1,3} \partial x_3 \partial a_{x_3}$ $\partial W_{1.3}$

 $= a_{x_1} \cdot \sigma'(x_3) \frac{\partial E}{\partial a_{x_3}}$

 $= a_{x_1} \cdot \sigma'(x_3) \frac{\partial x_5}{\partial a_{x_3}} \frac{\partial a_{x_5}}{\partial x_5} \frac{\partial E}{\partial a_{x_5}}$

Can we use these ideas to model semantic memory?

and their properties (e.g. birds lay eggs, dogs have 4 legs)

Questions: 1. How do we know what properties a concept has and how they should be generalized?

2. How is this knowledge acquired?

3. How does it degrade?

Semantic Cognition: Our intuitive understanding of concepts

A classical model of semantic concepts (Quillan, 1968)

Concepts organized hierarchically from general to specific

Propositions stored once at highest level to which they apply

Strengths: Efficient, new concepts inherit a lot of information

Weaknesses: How do you handle exceptions? How do you know where to store a property? From McClelland & Rogers (2003)

The Rogers & McClelland Model

Network trained to answer triplet questions: Given item and relation, output attributes

No explicit hierarchy

Started with random weights, trained on Quillan's data

Learning semantic relations through backpropagation

Key result 1: Progressive differentiation

Broad distinctions made first

Key result 2: Graceful degradation

Picture naming responses for JL			
Item	Sept. 91	March 92	March 93
Bird	+	+	Animal
Chicken	+	+	Animal
Duck	+	Bird	Dog
Swan	+	Bird	Animal
Eagle	Duck	Bird	Horse
Ostrich	Swan	Bird	Animal
Peacock	Duck	Bird	Vehicle
Penguin	Duck	Bird	Part of animal
Rooster	Chicken	Chicken	Dog

Delayed copy of a camel

Noise added to representations disrupts specific features

Multi-layer networks

- 1. Dynamics of neural networks can capture features of human information processing
- 2. Backpropagation is a general algorithm for learning in multi-layer networks
- 3. Neural networks can give rise to "emergent" learning phenomena