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6. Multi-layer networks



Multi-layer networks

1. Dynamics of neural networks can capture features  
   of human information processing 

2. Backpropagation is a general algorithm for learning  
   in multi-layer networks 

3. Neural networks can give rise to “emergent”  
   learning phenomena



Single layer perceptrons are linear classifiers
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Multi-layer perceptrons are non-linear classifiers
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Intuition: Hidden layer nodes can encode arbitrary 
interactions between input layers



Who cares?  
 

Why not just use regression? 
 

Are there any inherent reasons to be  
interested in networks?



The physical symbol system hypothesis

"A physical symbol system has the necessary and sufficient 
means for general intelligent action”

Newell and Simon (1976)

https://en.wikipedia.org/wiki/Sufficient
https://en.wikipedia.org/wiki/Sufficient


The physical symbol system hypothesis

1.The brain is a computer that manipulates symbols 

2.You can distinguish between the hardware (neurons) and 
  software (knowledge) 

3.In principle, this intelligence software can be run on many 
  different kinds of hardware, including potentially desktop    
  computers (functionalism) 

4.Our goal as cognitive scientists is to understand the  
  software. Who cares about the hardware? 



The General Problem Solver (1959)

If you can define a search space of 
transformations, a start state, and 
an ends state, the algorithm can 
determine how to find the goal

Problem: How do you get this 
search space?



Strengths of connectionism

1. Each unit of the network is a simple computer, but the  
   network as a whole can give rise to complex    
   phenomena. 

2. The framework is general—you don’t need a separate  
   model for every domain (sort of). 

3. Blurs the hardware/software distinction



The word superiority effect (Reicher, 1969)
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The word superiority effect (Reicher, 1969)



The word superiority effect (Reicher, 1969)

80% accuracy 85% accuracy

Letters Quadgrams Words

95% accuracy



Interactive Activation Model (McClelland & Rumelhart, 1981)

Naive model of word processing: 
You first perceive visual features, 
These features are used to recognize letters, 
You combine letters to recognize words

Key claim of the IAM: 
All of these processing steps happen in 
parallel, and interact with each-other



A sketch of the Interactive Activation Model

Inhibitory connections 
within-levels 
If the first letter is T, it isn’t A

Inhibitory and excitatory 
connections between-levels 
If the first is T, the word could 
TIME, but not WORK 
If there is growing evidence 
that the word is TIME, the first 
letter is probably T



A sketch of the Interactive Activation Model

Word frequency affects 
expectations

If you see T- - -, you are 
more likely to be reading 
TIME than TARP

Even if you see T- - -, you’re 
very unlikely to be  
reading TPAR



A sketch of the Interactive Activation Model



The IAM predicts the Word Superiority Effect



Do you get the Word Superiority Effect for non-words?

https://waltervanheuven.net/jiam/index.html

Try out some words 
and non-words in 
the app.

Compare, e.g.  
- - V - 
HAVE 
MAVE 
AMVE 
EMVA



Using the Interactive Activation Model app

https://waltervanheuven.net/jiam/index.html

Change input  
and run

Switch between seeing words 
and letters, specify which letter



Two other interesting effects

Frequency differences 
get magnified over time

Similar words support 
each-other



Strengths and Weaknesses of the Interactive Activation Model

1. A complex and surprising effect arises of individual  
   connections with no goal 

2.The dynamics of this network give rise to phenomena  
   about timing of information processing that are testable

Strengths

Weaknesses
1. Where do these weights 

come from? 
2. How does the network know 

words and frequencies?



But how do we learn connections weights in a multi-layer network?
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What does it mean to learn in a neural network?
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So next time we see (x1, x2)

We got (x1, x2)
We computed ̂y = f (w0 + w1x1 + w1x1)
But we wanted to predict      ! y

Now we want to change w0, w1, x2

We predict something closer to y



Aside: Learning rates
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So next time we see (x1, x2)
We predict something closer to y

Why not predict exactly      ? y

Δwi = α ⋅ (y − ̂y) xi



Credit assignment in multi-layer networks
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If you have an error, in     , who do you blame?̂y

̂ySuppose we find that                   caused      to be too highx3 ⋅ w3,5



Gradient Descent

Image from Saugat Bhattari
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Gradient Descent
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Want to separate error parts: 

1. Error cause by 

2. Error caused by   

Credit assignment in multi-layer networks
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We’re going to do this using partial derivatives



Updating one weight

Terms: 

∂E
∂w3,5

=
∂x5

∂w3,5

∂ax5

∂x5

∂E
∂ax5

E Squared Prediction error

x5 The summed input to x5 = w6,5 + w3,5 ⋅ x3 + w4,5 ⋅ x4

1 w0,4
w1,3

x2

w0,0
x3

x1 w1,4
w2,3

w2,4

x4

w3,5

w4,5

1

x5

w6,5

ax5 The activation of  x5 =
1

1 − ex5
= σ (x5)

By the chain rule



Updating one weight
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The gradient for one activation

∂x5

∂ax3

= w3,5

∂E
∂ax5

= 2 (y − ax5) E = (ax5 − y)2

∂ax5

∂x5
= σ (x5) (1 − σ (x5)) σ′ (x) = σ (x) (1 − σ (x))

∂E
∂ax3

=
∂x5

∂ax3

∂ax5

∂x5

∂E
∂ax5

1
w0,4

w1,3

x2

w0,0
x3

x1 w1,4
w2,3

w2,4

x4

w3,5

w4,5

1

x5

w6,5

x5 = w6,5 + aw3,5
⋅ ax3

+ w3,5 ⋅ ax4



Backpropagation
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Can we use these ideas to model semantic memory?

Semantic Cognition: Our intuitive understanding of concepts 
and their properties (e.g. birds lay eggs, dogs have 4 legs)

Questions:  
1. How do we know what properties a concept has and how 

they should be generalized? 

2. How is this knowledge acquired? 

3. How does it degrade?



A classical model of semantic concepts (Quillan, 1968)

From McClelland & Rogers (2003)

Concepts organized hierarchically 
from general to specific

Propositions stored once at 
highest level to which they apply

Strengths: Efficient, new concepts 
inherit a lot of information

Weaknesses: How do you handle exceptions? 
How do you know where to store a property?



The Rogers & McClelland Model

Network trained to answer triplet 
questions: Given item and 
relation, output attributes

No explicit hierarchy

Started with random weights, 
trained on Quillan’s data



Learning semantic relations through backpropagation



Key result 1: Progressive differentiation

Broad distinctions made first Broad properties learned first



Key result 2: Graceful degradation

Delayed copy of a camel

 Noise added to representations 
disrupts specific features



Multi-layer networks

1. Dynamics of neural networks can capture features  
   of human information processing 

2. Backpropagation is a general algorithm for learning  
   in multi-layer networks 

3. Neural networks can give rise to “emergent”  
   learning phenomena


