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1. Bayesian Inference



Bayesian inference

1. Bayesian probability is a way of thinking  
   about probability as subjective belief. 

2. We can use Bayesian inference to compare  
   models of the world  

3. Bayesian inference is a framework for  
   learning about the world



Rules of probability

For any event    , let            be the probability of event A P (A) A

1.  

2.  

3. Events     and     are independent iff 

0 ≤ P (A) ≤ 1

P (A) + P ( ∼ A) = 1

P (A + B) = P (A) P (B)A B

But what is probability? 

Why do we think that a coin is fair if P (heads) = .5

…



Classical probability

The probability of an event is the ratio of the number of cases favorable to 
it, to the number of all cases possible when nothing leads us to expect 
that any one of these cases should occur more than any other,  
which renders them, for us, equally possible.                           

 
Pierre-Simon Laplace (1812)

                                because there are two outcomes, and 
nothing makes us think they are not equally likely 
P (heads) = .5



The problems with classical probability

The probability of an event is the ratio of the number of cases favorable to 
it, to the number of all cases possible when nothing leads us to expect 
that any one of these cases should occur more than any other,  
which renders them, for us, equally possible.                           

 
Pierre-Simon Laplace (1812)

1. It’s circular. A fair coin is defined a coin that is fair  

2. It’s hard to generalize. Often, hard to justify the principle of 
indifference. We’d like talk about cases where we don’t know all the 
possible outcomes, where they aren’t equally likely, etc.  
E.g. probability a bus comes on time.



Frequentist probability

The probability of an event is defined by the limit of its relative frequency 
over many trials of an experiment.   

because if you flip a coin over 
and over and over again for 
long enough, half of the flips 
will have come up heads.

P (heads) = .5



The problems with frequentism

The probability of an event is defined by the limit of its relative frequency 
over many trials of an experiment.   

But what about events that have never happened before and will never 
happen again? 

E.g. Probability that the we will have in-person class in the spring

What about things that aren’t “events” 

E.g. Probability that Germ theory is correct?



Bayesian probability

Probability is subjective, it exists only in your mind. 
 
What you mean when you talk about            is the 
strength of your belief that A will happen. Think  
of it as how much you would be willing to bet on     .  

Further, your            can be different from my          . 

P (A)

P (A) P (A)

A
Reverend 

Thomas Bayes
Published posthumously 
by Price, and generalized 

into the from we use 
today by Laplace 

                              because I expect it to come up 
heads 50% of the time based on my prior belief 
about the coin and my experience flipping it. 

P (heads) = .5



But how should you form your beliefs?

In practice, we don’t want to say you can have any old belief.  
We want to talk about the belief that a rational agent should 
have after observing some data 

P (H |D) =
P (D |H) P (H)

P (D)
Bayes rule: 

Likelihood 
(What the data say) 

Prior probability 
(What you used to believe) 

Posterior probability 
(What you used to believe)



Deriving Bayes’ rule

P (A & B) = P (A |B) P (B)
Definition of joint probability

P (A & B) = P (B |A) P (A)

P (B |A) P (A) = P (A |B) P (B) Transitive property

P (H |D) =
P (D |H) P (H)

P (D)
P (B |A) =

P (A |B) P (B)
P (A)



The problems with Bayesianism

Bayes rule gives you a way to compute how much you should believe in 
some hypothesis (posterior) if you know three things: 

1. The likelihood of the data under that hypothesis 

2. The prior probability of that hypothesis 

3. The probability of the data  

Problem: We only know the likelihood (1)

Priors are the biggest problem with Bayesianism because priors are 
subjective (i.e. reasonable people can disagree about the right prior). 

There are some techniques for dealing with this, but it’s a real problem. 

Still… priors matter!

P (H |D) =
P (D |H) P (H)

P (D)



Why priors matter

Suppose you wake up tomorrow feeling like you have a fever. 

Which of these ailments do you think you are most likely to have?

P (fever |cold) = .01

P (fever |covid-19) = .6

P (fever |malaria) = 1

(I made these numbers up)

Probably covid-19, because P (covid-19) ≫ P (malaria)
But note, you probably don’t have a cold because                             is low.P (fever |cold)



The problems with Bayesianism

Bayes rule gives you a way to compute how much you should believe in 
some hypothesis (posterior) if you know three things: 

1. The likelihood of the data under that hypothesis 

2. The prior probability of that hypothesis 

3. The probability of the data  

Problem: We only know the likelihood (1)

You can’t compute the probability of the data, but often you don’t actually 
care about the posterior probability of the hypothesis      . 

You only care whether it is more probable or less probable than some 
alternative hypothesis 

H1

H2

P (H |D) =
P (D |H) P (H)

P (D)



Classical probability

The probability of an event is the ratio of the number of cases favorable to 
it, to the number of all cases possible when nothing leads us to expect 
that any one of these cases should occur more than any other,  
which renders them, for us, equally possible.                           

 
Pierre-Simon Laplace (1812)

1. It’s circular. A fair coin is defined a coin that is fair  

2. It’s hard to generalize. Often, hard to justify the principle of 
indifference. We’d like talk about cases where we don’t know all the 
possible outcomes, where they aren’t equally likely, etc.  
E.g. probability a bus comes on time.



The relative probability of two hypotheses

P (H1 |D)
P (H2 |D)

=

P(D |H1)P(H1)
P(D)

P(D |H2)P(H2)
P(D)



Often you actually want to compare hypotheses

Null hypothesis testing draws inferences 
by rejecting the Null  
(i.e. finding that you observed data that 
is unlikely under the null) 

But sometimes the data are just unlikely! 

Sometimes the data are even more 
unlikely under a reasonable alternative 
hypothesis.

Randall Munroe, XKCD 
https://xkcd.com/1132/



Frequentism vs Bayesianism

In frequentism, probabilities are objective. They are properties of the 
world defined by the long-run outcomes of random process.  

The parameters we want to estimate have some true exact value, and 
we can try to estimate them by talking about how future samples from 
the random process would look.  

In Bayesianism, probabilities are subjective. They are properties of the 
mind of the experimenter. 

What are estimating the parameters of hypotheses and not the world. 
We can talk about how much or how little certainty we have about the 
truth of our hypotheses. 

P (D |H)

P (H |D)



Bayesian inference for coin flips

HHTHT 
HHHHH

What process produced these sequences?

adapted slides by 
Josh Tenenbaum 



What are hypotheses?

Hypotheses     refer to processes that could have generated the data    .  
 

For each hypothesis     ,                   is the probability of      being 
generated by the process identified by hypothesis 

Bayesian inference gives us a method for inferring a distribution of 
belief over these hypotheses, given that we observed data  

Hypotheses     are mutually exclusive: only one process could have 
generated 

H

D

Hi P (D |Hi)

D

Hi

D

H

D



Hypotheses for coin flips

Describe the process by which       could have been generatedD

D = HHTHT
• Fair coin 

• Biased coin with   

• Several different coins and a rule 
about which to flip 

• etc

P (H) = .5
P (H) = p

Statistical Models



Comparing hypotheses

1. Two simple hypotheses:  
 

              Fair Coin —   
       Always Heads —   
H1 P (H) = .5
H2 P (H) = 1

2. Simple vs complex hypothesis:  
 

              Fair Coin —   
       Biased Coin —   
H1 P (H) = .5
H2 P (H) = p

3. Infinitely many hypotheses:  
 

              Biased coin —  Hi P (Hi) = pi



Comparing two simple hypotheses

1. Two simple hypotheses:  
 

              Fair Coin —   
       Always Heads —   
H1 P (H) = .5
H2 P (H) = 1

P (H |D) =
P (D |H) P (H)

P (D)
Bayes rule: 

Ratio form: 
P (H1 |D)
P (H2 |D)

=
P (D |H1) P (H1)
P (D |H2) P (H2)



Bayes’ rule in odds form

P (H1 |D)
P (H2 |D)

=
P (D |H1) P (H1)
P (D |H2) P (H2)

D :                     data

H1, H2 :           models

P (H1 |D) :      posterior probability       generated the dataH1

P (D |H1) :      likelihood of data under model H1
P (H1) :            prior probability       generated the dataH1



Odds for two simple hypotheses

P (H1 |D)
P (H2 |D)

=
P (D |H1) P (H1)
P (D |H2) P (H2)

D = HHTHT

P (D |H1) =
1
2

5
P (D |H1) = 0

H1 :  “fair coin” H2 :  “always heads”

P (H1) =
999
1000

P (H2) =
1

1000

P (H1 |D)
P (H2 |D)

= ∞



Odds for two simple hypotheses

P (H1 |D)
P (H2 |D)

=
P (D |H1) P (H1)
P (D |H2) P (H2)

H1

D = HHHHH
:  “fair coin”

P (D |H1) =
1
2

5
P (D |H1) = 1

P (H1) =
999
1000

P (H2) =
1

1000

P (H1 |D)
P (H2 |D)

≈ 30

H2 :  “always heads”



Odds for two simple hypotheses

P (H1 |D)
P (H2 |D)

=
P (D |H1) P (H1)
P (D |H2) P (H2)

H1

P (D |H1) =
1
2

10

D = HHHHHHHHHH
:  “fair coin”

P (H1) =
999
1000

P (D |H2) = 1

P (H2) =
1

1000

P (H1 |D)
P (H2 |D)

≈ 1

H2 :  “always heads”



Comparing simple and complex hypotheses

2. Two simple hypotheses:  
 

              Fair Coin —   
       Always Heads —   
H1 P (H) = .5
H2 P (H) = p

1.       is a special case of 

2. for any observed data     , 
we can choose     such that     is more likely under            

H2 : P (H) = p is more complex than                             in two ways:  H1 : P (H) = .5

H1 H2

D
p D H2



Comparing simple hypotheses



Comparing simple and complex hypotheses



Comparing simple and complex hypotheses

2. Two simple hypotheses:  
 

              : Fair Coin —   
       : Biased Coin —  
H1 P (H) = .5
H2 P (H) = p

1.       is a special case of 

2. for any observed data     , 
we can choose     such that     is more likely under            

H2 : P (H) = p is more complex than                             in two ways:  H1 : P (H) = .5

H1 H2

D
p D H2

How do we deal with this? 
1. Frequentist: hypothesis testing 
2. Bayesian: falls out of rules of probability



Comparing simple and complex hypotheses

P (H1 |D)
P (H2 |D)

=
P (D |H1) P (H1)
P (D |H2) P (H2)

H1 : P (H) = .5

D = HHTHT
H2 : P (H) = p

Computing                     is easy: P (D |H1) P (D |H1) =
1
2N

We can compute                     by averaging over     : P (D |H2) p

P (D |H2) = ∫
1

0
P (D |p) P (p |H2)

Prior on p



Assuming every    is equally likely apriorip



Comparing infinitely many hypotheses

3. Infinitely many hypotheses:  
 

              : Biased coin — Hi

p

d1 d2 d3 d4

P (Hi) = pi

Assume the data are 
generated from a model:

P (H) = p



Picking a likelihood and prior

For a coin with weight    , the likelihood of observing the data     is:

P (D |p) = pNH (1 − p)NT

p D

This gives a likelihood. 

How do we pick a prior?



Comparing infinitely many hypotheses for coins

Suppose you flipped a coin 10 times and saw 5H and 5T

How likely do you think you are to see H on the next flip?

Probably 50/50, you’ve seen 5H and 5T

Suppose you flipped a coin 10 times and saw 4H and 6T

How likely do you think you are to see H on the next flip?

Probably closer to 50/50 than 40/60. Why? Prior knowledge



Imagining coin flips

One way of thinking about what you believed is that you are 
combining your previous experience of coin flips with the data     . 

You could model this as seeing  
e.g. 5 heads and 5 tails in the past.  

Or 50 heads and 50 tails. 

Or 500 heads and 500 tails, etc.  

The more experience you have seen the less you should be moved 
by seeing the data    . D

D



Formalizing imagined coin flips

These hypothetical coin flips can 
be modeled by a distribution 
called Beta which has two 
parameters: α and β.  

eta(α,β)       encodes models seeing 
α heads and β tails in the past. 

α β

Beta (α, β)
α β

Wikipedia



What does this model predict?

Try this shiny app to explore how changing your prior  
(by changing α and β), and changing the data you observe, 
affect your posterior beliefs about the coin weight. 

α β

https://shiny.stat.ncsu.edu/jbpost2/BasicBayes/ 



Bayesian inference

1. Bayesian probability is a way of thinking  
   about probability as subjective belief. 

2. We can use Bayesian inference to compare  
   models of the world  

3. Bayesian inference is a framework for  
   learning about the world


