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The authors present a Bayesian framework for understanding how adults and children learn the meanings
of words. The theory explains how learners can generalize meaningfully from just one or a few positive
examples of a novel word’s referents, by making rational inductive inferences that integrate prior
knowledge about plausible word meanings with the statistical structure of the observed examples. The
theory addresses shortcomings of the two best known approaches to modeling word learning, based on
deductive hypothesis elimination and associative learning. Three experiments with adults and children
test the Bayesian account’s predictions in the context of learning words for object categories at multiple
levels of a taxonomic hierarchy. Results provide strong support for the Bayesian account over competing
accounts, in terms of both quantitative model fits and the ability to explain important qualitative
phenomena. Several extensions of the basic theory are discussed, illustrating the broader potential for
Bayesian models of word learning.
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Learning even the simplest names for object categories presents
a difficult induction problem (Quine, 1960). Consider a typical
dilemma faced by a child learning English. Upon observing a
competent adult speaker use the word dog in reference to Max, a
particular Dalmatian running by, what can the child infer about the
meaning of the word dog? The potential hypotheses appear end-
less. The word could refer to all (and only) dogs, all mammals, all
animals, all Dalmatians, this individual Max, all dogs plus the
Lone Ranger’s horse, all dogs except Labradors, all spotted things,
all running things, the front half of a dog, undetached dog parts,
things that are dogs if first observed before next Monday but cats
if first observed thereafter, and on and on. Yet despite this severe

underdetermination, even 2- or 3-year-olds seem to be remarkably
successful at learning the meanings of words from examples. In
particular, children or adults can often infer the approximate ex-
tensions of words such as dog given only a few relevant examples
of how the word can be used and no systematic evidence of how
words are not to be used (Bloom, 2000; Carey, 1978; Markman,
1989; Regier, 1996). How do they do it?

Two broad classes of proposals for how word learning works
have been dominant in the literature: hypothesis elimination and
associative learning. Under the hypothesis elimination approach,
the learner effectively considers a hypothesis space of possible
concepts onto which words will map and (leaving aside for now
the problem of homonyms and polysemy) assumes that each word
maps onto exactly one of these concepts. The act of learning
consists of eliminating incorrect hypotheses about word meaning,
on the basis of a combination of a priori knowledge and observa-
tions of how words are used to refer to aspects of experience, until
the learner converges on a single consistent hypothesis. Some
logically possible hypotheses may be ruled out a priori because
they do not correspond to any natural concepts that the learner
possesses—for example, the hypothesis that dog refers to things
that are dogs if first observed before next Monday but cats if first
observed thereafter. Other hypotheses may be ruled out because
they are inconsistent with examples of how the word is used—for
example, one can rule out the hypothesis that dog refers to all and
only cats, or all and only terriers, upon seeing the example of Max
the Dalmatian.

Settling on one hypothesis by eliminating all others as incorrect
amounts to taking a deductive approach to the logical problem of
word learning, and we sometimes refer to these approaches as
deductive approaches. Hypothesis elimination has its roots in early
accounts of human and machine concept learning (Bruner, Good-
now, & Austin, 1956; Mitchell, 1982), and it corresponds to one of
the standard paradigms considered in formal analyses of natural
language syntax acquisition (Gold, 1967; Pinker, 1979). It is also
related to classic inferential frameworks that have been considered
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in the philosophy of science, including Popper’s (1959) falsifica-
tionism, and the eliminative induction of Mill (1843) and Bacon
(1620/1960).

Many variants of hypothesis elimination are present in the
word-learning literature. Pinker (1984, 1989), Berwick (1986), and
Siskind (1996) have proposed particularly clear and explicit formal
models. For instance, Siskind (1996) presented an efficient algo-
rithm for keeping track of just the necessary and possible compo-
nents of word-meaning hypotheses consistent with a set of exam-
ples. Most research on word learning does not work with such
precise formal models, and so it is not always so easy to identify
the inference framework guiding the research. Whenever research-
ers speak of some process of “eliminating” or “ruling out” hypoth-
eses about word meaning, as Pinker (1989) does, or of tracking
some minimal set of necessary and sufficient meaning compo-
nents, as Siskind (1996) does, we take them to be appealing to
some kind of eliminative or deductive model, at least implicitly.
This way of thinking about word learning serves as the foundation
for many substantive proposals about how children bring prior
knowledge to bear on the inference problem (e.g., Carey, 1978;
Clark, 1987; Markman, 1989).

The main alternatives to hypothesis elimination are based on
some form of associative learning, such as connectionist networks
(Colunga & Smith, 2005; Gasser & Smith, 1998; Regier, 1996,
2005; L. B. Smith, 2000) or similarity matching to examples
(Landau, Smith, & Jones, 1988; Roy & Pentland, 2004).1 By using
internal layers of “hidden” units and appropriately designed input
and output representations, or appropriately tuned similarity met-
rics, these models are able to produce abstract generalizations of
word meaning that go beyond the simplest form of direct percept–
word associations. The boundary between hypothesis elimination
approaches and associative learning approaches is not always so
clear. For instance, Siskind (1996) kept track of the frequencies
with which specific words and world contexts are associated, to
support rejection of noise and construction of homonymic lexical
entries.

Although both hypothesis elimination and associative learning
models offer certain important insights, we will argue that neither
approach provides an adequate framework for explaining how
people learn the meanings of words. We will consider the follow-
ing five core phenomena that have been highlighted in the litera-
ture of the last 20 years (e.g., Bloom, 2000; Carey, 1978; Colunga
& Smith, 2005; Markman, 1989; Regier, 1996; Siskind, 1996;
Tomasello, 2001) and that any model of word learning should
account for:

1. Word meanings can be learned from very few examples.
Often a reasonable guess can be made from just a single example,
and two or three more examples may be sufficient in the right
contexts to home in on the meaning with high accuracy.

2. Word meanings can be inferred from only positive exam-
ples—examples of what the word refers to. Negative examples—
examples of what the word does not refer to—may be helpful but
are often not necessary for the learner to make a reasonable guess
at a word’s meaning.

3. Word meanings carve up the world in complex ways, such
that an entity, action, property, or relation can typically be labeled
by multiple words. The target of word learning is not simply a
single partition of the world into mutually exclusive categories,

with one word per category, but rather a system of overlapping
concepts, each with a distinct linguistic label.

4. Inferences about word meanings from examples may often be
graded, with varying degrees of confidence reflecting the level of
ambiguity or noise in the learner’s experience.

5. Inferences about word meanings can be strongly affected by
pragmatic or intentional reasoning about how the observed exam-
ples were generated given the relevant communicative context.

We do not mean to suggest that all of these phenomena apply in
every case of word learning, only that they are pervasive and of
central importance. They illustrate some of the severe challenges
that word learning poses as a computational problem to be solved,
as well as some of the powerful inferential capacities that children
must be able to bring to bear on its solution. A satisfying frame-
work for modeling word learning should thus present natural
explanations for these phenomena. As we explain below, tradi-
tional approaches based on hypothesis elimination or associative
learning do not do so in general; at best, each approach captures
only a subset of these phenomena.

The main goal of this article is to propose a new approach to
understanding word learning based on principles of rational sta-
tistical inference. Our framework combines some of the principal
advantages of both deductive and associative frameworks, while
going beyond some of their major limitations. Our key innovation
is the use of a Bayesian inference framework. Hypotheses about
word meanings are evaluated by the machinery of Bayesian prob-
ability theory rather than deductive logic: Hypotheses are not
simply ruled in or out but scored according to their probability of
being correct. The interaction of Bayesian inference principles
with appropriately structured hypothesis spaces can explain the
core phenomena listed above. Learners can rationally infer the
meanings of words that label multiple overlapping concepts, from
just a few positive examples. Inferences from more ambiguous
patterns of data lead to more graded and uncertain patterns of
generalization. Pragmatic inferences based on communicative con-
text affect generalizations about word meanings by changing the
learner’s probabilistic models.

The plan of our article is as follows. We begin by pointing out
some of the specific difficulties faced by the standard approaches
to word learning. In the core of the article we develop our Bayesian
framework in the context of a particular case study: learning
common nouns for object categories, such as “animal,” “dog,” or
“terrier.” We present the main ingredients of a computational

1 There is another important approach to modeling the acquisition of
word meaning, broadly within the associative learning tradition, which we
do not discuss here because it focuses on a different learning task that is
complementary to our focus on learning word meanings from examples.
This is the problem of learning the associative contexts of words from
observing how those words tend to be used together in conversation or
writing. Statistical approaches that look for clusters of words occurring in
similar contexts (Griffiths, Steyvers, & Tenenbaum, 2007; Redington,
Chater, & Finch, 1998) or a latent space that best explains patterns of word
co-occurrence (Landauer & Dumais, 1997) have recently produced intrigu-
ing results. It would be of interest to see how these approaches could
profitably be combined with the approaches we discuss here, to yield
models of how word learning draws on both observed examples and
patterns of linguistic usage, but that is beyond the scope of the present
work.
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model based on the principles of our Bayesian framework, pro-
viding an explanation for the key phenomena in learning overlap-
ping extensions. The predictions of this model are then tested in
three experiments, with both adult and child learners, demonstrat-
ing the importance of these inferences in an ostensive word-
learning context. These inferences may provide one means by
which people can acquire words for concepts at multiple levels of
an object-kind hierarchy (subordinate, basic, and superordinate)—
traditionally considered a critical challenge of early word learning
(e.g., Markman, 1989; Waxman, 1990). We then present a more
quantitative fit of the model given the data. Finally, we show how
the Bayesian framework can potentially address other difficulties
faced by standard approaches, and we consider the challenges
facing it as a general framework for word learning.

Evaluating Traditional Approaches: The Case of
Object-Kind Labels

Before we describe our Bayesian approach and its experimental
tests, it will be helpful to give some concrete illustrations of the
core phenomena of word learning listed above and to explain
traditional deductive and associative accounts of these phenomena,
as well as some of the difficulties facing them. Let us return to our
opening question of how a child could infer the meaning of a
common noun that labels an object kind, such as the word dog.
Numerous studies have shown that children can make reasonable
guesses about such word meanings from a single labeling event.
For instance, Markman and Hutchinson (1984) taught 3-year-olds
a new word (e.g., fep) for a familiar object (e.g., a German
shepherd) and showed that children preferred to generalize new
labels to taxonomically similar objects (e.g., a poodle) rather than
a thematically matching object (e.g., a bone). Markman and Wach-
tel (1988) found that 3-year-olds interpreted a novel word as
referring to a whole object as opposed to a salient part of the
object. Landau et al. (1988) showed that 2-year-olds preferred to
generalize category labels to objects matching in shape rather than
texture, size, or color. The ability to learn words from one or a few
exposures may even be present in children as young as 13 to 18
months (Woodward, Markman, & Fitzsimmons, 1994). These
rapid inferences are not restricted to object-kind labels. In the first
fast mapping study of Carey and Bartlett (1978), an adult pointed
children toward two trays, one colored a prototypical blue and the
other colored an unusual olive green. The adult then asked, “Bring
me the chromium tray, not the blue one, the chromium one.” Many
of the children made the correct inference that “chromium” re-
ferred to the olive green color from only one or two experiences of
this sort, and about half of them remembered the word–referent
pairing about 5 weeks later. Furthermore, Heibeck and Markman
(1987) showed that the ability to use linguistic contrast to infer
word meanings applied to other semantic domains such as shape
and texture. In sum, the ability to infer important aspects of a
word’s meaning from just a single positive example—what we
have referred to as Phenomena 1 and 2 above—seems to be present
in children as young as 2 years of age.

How do children make these inferences about word meanings
from such sparse data? One influential proposal within the hypoth-
esis elimination paradigm has been that people come to the task of
word learning equipped with strong prior knowledge about the
kinds of viable word meanings (Carey, 1978; Clark, 1987; Mark-

man, 1989), allowing them to rule out a priori the many logically
possible but unnatural extensions of a word. Two classic con-
straints on the meanings of common nouns are the whole object
constraint and the taxonomic constraint (Markman, 1989). The
whole object constraint requires words to refer to whole objects, as
opposed to parts of objects or attributes of objects, thus ruling out
word meanings such as the front half of a dog or undetached dog
parts. The taxonomic constraint requires words to refer to taxo-
nomic classes, typically in a tree-structured hierarchy of natural
kind categories. Given one example of dog, the taxonomic as-
sumption would rule out the subsets of all spotted things, all
running things, all dogs plus the Lone Ranger’s horse, or all dogs
except Labradors.

In most cases, such as our example of a child learning the word
dog, these constraints are useful but not sufficient to solve the
inference problem. Even after ruling out all hypotheses that are
inconsistent with a typical labeled example (e.g., Max the Dalma-
tian), a learner will still be left with many consistent hypotheses
that also correspond to possible meanings of common nouns
(Figure 1). How are we to infer whether a word that has been
perceived to refer to Max applies to all and only Dalmatians, all
and only dogs, all canines, all mammals, or all animals, and so on?
This problem of inference in a hierarchical taxonomy is interesting
in its own right but, more importantly, as a special case of a
fundamental challenge: the problem of learning with overlapping
hypotheses—Phenomenon 3 from the list above. In most interest-
ing semantic domains, the natural concepts that can be named in
the lexicon are not mutually exclusive but overlap in some more or
less structured way. Thus, a single example of a new word will
typically fall under multiple nameable categories and therefore be
insufficient to fix the reference class of the word.

Another example of learning with overlapping hypotheses arises
in contexts where multiple dimensions of an object, such as its
shape and material composition, might be relevant simultaneously.
Consider the words that might apply to objects found in a furniture
store: kinds of objects such as table, chair, shelf, and vase, together
with kinds of solid substances such as wood, metal, plastic, and
stone (Figure 2). Kinds of objects tend to have a fairly reliable
perceptual correlate of shared shape, and kinds of substances refer
to the material an object is made of. Both adults and children are
capable of learning word meanings with this orthogonal pattern
overlap from a small number of examples (Akhtar, Jipson, &
Callanan, 2001; Mintz & Gleitman, 2002). Later in the article we
discuss this case in more detail.

Markman (1989) suggested one solution for dealing with over-
lapping hypotheses in the case of object categories: People may
assume that new common nouns map not to just any level in a
taxonomy but preferentially to a basic level of categorization
(Rosch, Mervis, Gray, Johnson, & Boyes-Braem, 1976). Basic-
level categories, such as the category of dogs, are clusters of
intermediate size that maximize many different indices of category
utility (relative to smaller, subordinate categories, e.g., Dalma-
tians, or larger, superordinate categories that contain them, e.g.,
animals). Whether children really have a preference to map words
onto basic-level kinds is controversial (Callanan, Repp, McCarthy,
& Latzke, 1994), but if this preference does exist, it is clear how
it would enable names for basic-level categories to be learned after
seeing just a single typical labeled example. In the context of
learning words for kinds of objects and kinds of substances,
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Landau et al. (1988) made an analogous suggestion that children
preferentially map words onto shape-based object categories, at
least for simple or regular shapes (Imai & Gentner, 1997; Soja,
Carey, & Spelke, 1991).

Assuming biases to map words onto basic-level object catego-
ries, together with the other constraints mentioned above, appears
to explain how a hypothesis elimination learner could learn word
meanings from just a single positive example, because each object
now belongs to just one nameable category. But this solution
works only for basic-level object labels like dog and in fact is
counterproductive for all other kinds of words. How do we learn
all of the other words we know, for categories at superordinate or
subordinate levels, for substance concepts, and everything else?
Admitting some kind of soft combination of these constraints
seems like a reasonable alternative, but no one has offered a
precise account of how these biases should interact with each other
and with the observed examples of a novel word, in order to
support meaningful generalizations from just one or a few exam-
ples. In one sense, that is our goal in this article.

Are the prospects any better for associative learning accounts, in
trying to explain word learning from just one or a few positive
examples? On the surface, associative learning would not seem
well suited to explaining any kind of rapid inference, because it is
typically conceived of as a gradual process of accumulating asso-
ciative strength over many experiences. Indeed, some classic as-

sociative models of language acquisition do not show enduring fast
mapping (Plunkett, Sinha, Moller, & Strandsby, 1992), because of
the potential for catastrophic interference. More recent models
have tried to account for rapid inferences about word meaning
(e.g., Colunga & Smith, 2005; Regier, 2005) through a combina-
tion of exemplar representations and attentional learning.

It is not clear, however, how the associative models can solve
the problem of overlapping extensions. One standard mechanism
in associative models is the presence of implicit negative evidence:
The models implicitly assume that a positive example of one word
is a negative example of every other word. This is precisely the
issue concerning overlapping extensions. One attempt to address
this problem was made by Regier (1996). He described a neural
network learning algorithm capable of learning overlapping words
from positive evidence only, using a weakened form of mutual
exclusivity that is gradually strengthened over thousands of learn-
ing trials. However, this model does not address the phenomenon
of learning from very few examples. Another class of models (Li
& MacWhinney, 1996; MacWhinney, 1998; Merriman, 1999) uses
competition among outputs to implement the idea of implicit
negative evidence. However, the simple mechanism of competi-
tion embodied in these models is not designed to explain how
children learn that multiple words can each apply to a single
object.

Figure 1. The extensions of words that label object-kind categories may overlap in a nested fashion, in accord
with the tree-structured hierarchy of an object-kind taxonomy.
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Recent work in associative models of word learning has focused
on the idea of tuning attentional biases. For example, a shape bias
for object labels could be the result of shifting attention to shape
(as opposed to material) over a set of training exemplars (e.g.,
Colunga & Smith, 2005). The model of Regier (2005) acquires
attentional biases in both meaning space and form space, to enable
learning a system of form–meaning mappings. But the problem of
learning words with overlapping extensions persists: How do
learners acquire words at the subordinate or superordinate level, or
words for categories not based on shape, from just a few exam-
ples? These models have not tried to address this question, and it
is not clear how they could.

We argue that this essential problem of learning overlapping
word meanings from sparse positive examples can be solved by a
Bayesian approach to word learning. Relative to more traditional
approaches, our approach posits a more powerful statistical-
inference framework for combining prior knowledge with the
observed examples of a word’s referents. We focus on a set of
phenomena in the context of learning words for taxonomic cate-
gories that strongly suggest that some inferential mechanism of
this sort is at work. To illustrate with the ostensive learning
problem introduced earlier, after observing Max the Dalmatian
labeled a fep, a learner guided by a taxonomic hypothesis space
and perhaps some preference for labeling basic-level categories
might reasonably guess that fep refers to all dogs. Now suppose
that the learner observes three more objects labeled as feps, each
of which is also a Dalmatian. These additional examples are
consistent with exactly the same set of taxonomic hypotheses that
were consistent with the first example; no potential meanings can

be ruled out as inconsistent that were not already inconsistent after
seeing one Dalmatian called a fep. Yet after these additional
examples, the word fep seems relatively more likely to refer to just
Dalmatians than to all dogs. Intuitively, this inference appears to
be based on a suspicious coincidence: It would be quite surprising
to observe only Dalmatians called feps if in fact the word referred
to all dogs and if the first four examples were a random sample of
feps in the world. This intuition can be captured by a Bayesian
inference mechanism that scores alternative hypotheses about a
word’s meaning according to how well they predict the observed
data, as well as how they fit with the learner’s prior expectations
about natural meanings. An intuitive sensitivity to these sorts of
suspicious coincidences is a core capacity enabling rapid word
learning, and we argue it is best explained within a Bayesian
framework.

Several previous studies have shown that multiple examples
help children learn subordinate or superordinate kind labels (Cal-
lanan, 1985, 1989; Liu, Golinkoff, & Sak, 2001; Waxman, 1990)
or adjectives (Akhtar et al., 2001; Mintz & Gleitman, 2002). For
instance, showing a dog, a horse, and a cow as examples of
“animals” provides better evidence than showing just a cow;
showing several differently shaped objects with a characteristic
texture as examples of a word for that texture provides better
evidence than showing just a single object. Intuitively, the addi-
tional examples help in these cases by ruling out compelling
alternative hypotheses, and a formal account of this “cross-
situational learning” was a key part of Siskind’s (1996) hypothesis
elimination model of word learning. However, Siskind’s hypoth-
esis elimination approach cannot explain the phenomenon of learn-

Figure 2. The extensions of words that label object shape and substance categories may overlap in a
crosscutting fashion because these two dimensions of object appearance are approximately independent.
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ing from a suspicious coincidence, because no hypotheses are
eliminated by the additional examples. This phenomenon also
poses a challenge to associative learning approaches to word
learning. Given one Dalmatian labeled three times as a fep and
three Dalmatians labeled a fep once for each, the correlation
between the appearance of dog features and the word fep is exactly
the same as the correlation between the appearance of Dalmatian
features and the word fep: 100% in both cases. Associative models
that attempt to infer word meaning from correlations between
perceptual feature clusters and labeling events thus also get no
inductive leverage from this coincidence.

To see further how the effects of multiple examples reveal the
inductive logic behind word learning, consider how a learner’s
beliefs about the meaning of fep might have changed had the first
four examples been a Labrador, a golden retriever, a poodle, and
a basset hound—rather than three Dalmatians. Presumably the
learner would become more confident that fep in fact refers to all
and only dogs, relative to the initial belief given the single example
of one Dalmatian called a fep. That is, the inference to a basic-
level meaning is qualitatively similar given either one example or
four examples from different subordinate classes but becomes
more confident in the latter case. This shift in confidence suggests
that the initial inference after one example was not simply due to
the application of a defeasible constraint ruling out all but the
basic-level hypothesis of dogs; if so, then the additional examples
would tell us nothing. A more plausible interpretation might be to
say that given the first example, there was still some probability
that the word mapped only onto the subordinate category of
Dalmatians. Subsequent evidence weighs against that overly spe-
cific hypothesis and shifts the corresponding weight of belief onto
the basic-level hypothesis of all and only dogs. In the experiments
described below, we show that both children and adults behave in
agreement with this picture: They increase their tendency to gen-
eralize at the basic level given multiple examples spanning a
basic-level hypothesis, relative to their base preference given just
a single example. The explanation for this behavior, as with the
restriction of generalization given three examples spanning a sub-
ordinate category discussed above, is that inferences to word
meaning are not based purely on hypothesis elimination subject to
hard and defeasible constraints. Rather they reflect some kind of
statistical inference that may become sharper or more focused as
additional consistent data are observed.

We will also show how these patterns of inference based on
suspicious coincidence can be captured in a statistical framework
based on Bayesian inference. In contrast with hypothesis elimina-
tion approaches, hypotheses are not just ruled in or out. Instead, the
probability of each alternative hypothesis is evaluated. In contrast
with associative learning approaches, the statistical information
does not just come from correlations between words and referents.
The inference mechanism is sensitive to how examples are gener-
ated and may disregard outliers or uninformative examples. The
Bayesian framework can thus explain the more general graded
character of generalization in word learning—Phenomenon 4
above—which causes difficulties for hypothesis elimination ap-
proaches in particular. A learner who has seen just a single
example will typically be less confident in generalizing the word to
new instances than a learner who has seen many consistent exam-
ples. Anomalous examples may be discounted as outliers rather

than given full weight in revising learners’ hypotheses (Jaswal &
Markman, 2001).

One last phenomenon of word learning has been particularly
central in recent studies: the role of intentional and pragmatic
inferences—Phenomenon 5 above. These phenomena pose a chal-
lenge for all approaches to word learning but particularly so for the
associative tradition. As even advocates of this tradition have
suggested (Regier, 2003), it is likely that some mechanisms be-
yond simple associative learning will be necessary to account for
the social factors at work in word learning. For example, Baldwin
and colleagues (Baldwin, 1991, 1993; Baldwin, Markman, Bill,
Desjardins, & Irwin, 1996) showed that by 18 months of age,
children use a speaker’s eye gaze and joint attention to infer which
object the speaker is referring to. If the speaker looks into a bucket
and says, “Look, a fep!” while the child is looking at another
object, the child would track the speaker’s gaze and interpret the
word as referring to the object inside the bucket. Or consider a
study by Tomasello and Barton (1994). An adult said to children,
“Let’s glip the doll,” and then executed one action, followed by the
exclamation “Oops!” and a second action, followed by the excla-
mation “There!” Children correctly inferred that “glipping” re-
ferred to the second action by using the emotional expression of
the experimenter. Furthermore, some word-learning constraints,
such as mutual exclusivity (Markman, 1989), have been reinter-
preted as pragmatic constraints (Diesendruck & Markson, 2001).
In other words, an example of a new word is not just a raw data
point to be entered blindly into a matrix of word–object co-
occurrences but a potentially rich communicative experience to be
explained by an inference to the word’s most likely meaning.
Although it is somewhat controversial whether it is in fact inten-
tional reasoning, versus more basic attentional cuing (e.g., L. B.
Smith, 2000), that guides children in solving these word-learning
problems, most agree that deciphering a speaker’s communicative
intent is an important component of word learning. It is clear how
these children’s inferences could be cast naturally in the frame-
work of hypothesis elimination, based on chains of pragmatic
deductions about what the adult intended to refer to, but not so
clear under an associative learning framework. Our Bayesian
framework can address at least some of these inferences in terms
of sensitivity to the sampling process, and we give an example of
this capacity later in the article.

In sum, traditional approaches based on hypothesis elimination
or associative learning can account for some but not all of the five
critical aspects of word learning we identified. In contrast, the
Bayesian framework we propose can potentially handle all five
phenomena. In the rest of the article we lay out the model in more
detail, provide empirical evidence from both adults and 4-year-old
children in learning words for different levels of a taxonomic
hierarchy, and discuss some extensions and implications for our
framework.

The Bayesian Framework

Our model is formulated within the Bayesian framework for
concept learning and generalization introduced by Tenenbaum and
his colleagues (Tenenbaum, 1999; Tenenbaum & Griffiths, 2001;
Tenenbaum, Griffiths, & Kemp, 2006). This framework aims to
explain inductive learning at the level of computational theory
(Marr, 1982) or rational analysis (Anderson, 1990; Oaksford &
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Chater, 1998)—to understand in functional terms how implicit
knowledge and inferential machinery guide people in generalizing
from examples—rather than to describe precisely the psychologi-
cal processes involved.

We focus on the restricted problem of learning a single novel
word C from a few examples, but as we discuss later on, the
framework in principle extends to the more general problem of
learning a whole lexicon from a large corpus of experience. Let
X � x(1), . . . , x(n) denote a set of n observed examples of the novel
word C. The examples are drawn from some known domain of
entities U. We assume that the learner has access to a hypothesis
space H of possible concepts and a probabilistic model relating
hypotheses h � H to data X. Each hypothesis h can be thought of
as a pointer to some subset of entities in the domain that is a
candidate extension for C. We assume that the learner can identify
the extension of each hypothesis (i.e., which entities fall under it).
More generally, hypotheses could represent candidate intensions,
but here we make the simplifying assumption that each intension
yields a unique extension (a version of Clark’s [1987] contrast
principle), and we focus on how learners infer a word’s extension.

Given the examples X, the Bayesian learner evaluates all hy-
potheses for candidate word meanings according to Bayes’ rule, by
computing their posterior probabilities p(h|X), proportional to the
product of prior probabilities p(h) and likelihoods p(X |h):

p(h � X) �
p(X � h)p(h)

p(X)
(1)

�
p(X � h)p(h)

�
h��H

p(X � h�)p(h�)
. (2)

The prior p(h), including the hypothesis space itself, embodies the
learner’s expectations about plausible meanings for the word C,
independent of the examples X that have been observed. Priors
may reflect conceptual or lexical constraints, expectations about
how different kinds of words are used in different contexts, or
beliefs conditional on the meanings of other previously learned
words. They may be innate or acquired. A taxonomic constraint or
basic-level bias can be incorporated naturally through this term.

The likelihood p(X|h) captures the statistical information inher-
ent in the examples X. It reflects expectations about which entities
are likely to be observed as examples of C given a particular
hypothesis h about C’s meaning, such as a default assumption that
the examples observed will be a representative sample of the
concept to be learned. The likelihood may also be sensitive to other
data, such as the syntactic context of the examples, or examples of
other words (which might contrast with C). We consider some of
these possibilities later in the article.

The posterior p(h|X) reflects the learner’s degree of belief that h
is in fact the true meaning of C, given a combination of the
observations X with prior knowledge about plausible word mean-
ings. It is proportional to the product of the likelihood and prior for
that hypothesis, relative to the corresponding products for all other
hypotheses. This form embodies a principle of conservation of
rational belief: If a learner believes strongly in a particular hy-
pothesis h about the meaning of a word to be learned—that is, he
or she assigns a value near 1 to p(h|X)—then that learner must
necessarily believe strongly that other hypotheses do not pick out

the true meaning—that is, he or she must assign values near 0 to
p(h�|X) for all other h� � h.

All of these probabilities—priors, likelihoods, and posteriors—
are implicitly conditioned on a knowledge base, which could
include the meanings of previously learned words or abstract
principles about possible word meanings, how words tend to be
used, or how examples are typically generated. Later in the article
we consider more general analyses in which the likelihoods or
prior probabilities change to incorporate different aspects of a
learner’s background knowledge.

The main work of the model is done in specifying the likeli-
hoods and priors that enter into Bayes’ rule. Before considering
these components further, we note one additional piece of machin-
ery that is needed to relate the learner’s beliefs about word mean-
ing encoded in p(h|X) to generalization behavior. The learner needs
some way to decide whether any given new object y belongs to the
extension of C, given the observations X. If the learner is com-
pletely sure of the word’s meaning—that is, if p(h|X) � 1 for
exactly one h � h* and 0 for all other h—then generalization is
trivial: C applies to all and only those new objects y � h*. More
generally, the learner must compute a probability of generaliza-
tion, p(y � C |X), by averaging the predictions of all hypotheses
weighted by their posterior probabilities p(h|X):

p(y � C � X) � �
h�H

p(y � C � h)p(h � X). (3)

To evaluate Equation 3, note that p(y � C|h) is simply 1 if y � h,
and 0 otherwise, and p(h|X) � 0 unless the examples X are all
contained within h. Thus, the generalization probability can also be
written as

p(y � C � X) � �
h�y,X

p(h � X), (4)

or the sum of the posterior probabilities of all hypotheses that
contain both the new object y and the old examples X. Following
Tenenbaum and Griffiths (2001), if we interpret hypotheses h as
features or feature bundles (that might define the intensions of the
hypotheses) and the posterior probabilities p(h|X) as feature
weights, then Equation 4 captures the intuition that generalization
from X to y will increase in proportion to the number or weight of
features in common between X and y—as in classic models of
similarity judgment by Tversky (1977) and Shepard and Arabie
(1979). Yet because each hypothesis sharply picks out a subset of
entities, Equation 4 can also produce essentially all-or-none, rule-
like generalization if the posterior probability concentrates its mass
on a single hypothesis.

The Hypothesis Space

Most generally, the hypothesis space H is simply a set of
hypotheses about the meaning of the novel word C. Each hypoth-
esis h points to a subset of entities in the domain U that is a
candidate for the extension of C. For the purposes of Bayesian
inference, these hypotheses need not be structured or related to
each other in any particular way. They may be simply a set of
mutually exclusive and exhaustive candidate word extensions,
carrying the assumption that the word to be learned maps onto one
and only one of these subsets of the world. However, there are
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strong theoretical reasons—as well as practical motives—why we
should typically assume a more structured hypothesis space. Fig-
ures 1 and 2 show two examples of hypothesis spaces with differ-
ent large-scale structures: a tree-structured taxonomy of object
kinds, in which the hypotheses are nested (Figure 1), and an
orthogonal “two-dimensional” matrix of object and substance cat-
egories, in which any two hypotheses from different dimensions
overlap (Figure 2). As explained below, a structured hypothesis
space can be thought of as an important component of the learner’s
prior, perhaps the most important component that supports suc-
cessful learning from few examples. It is also the place where
many candidate word-learning principles enter into the analysis.
Practically speaking, assuming an appropriately structured hypoth-
esis space can allow that space to be constructed in a fairly
automatic fashion, based on independent behavioral data we col-
lect from participants. Assuming no structure to the hypothesis
space can force modelers to specify every hypothesis and its
associated prior probability by hand (e.g., Heit, 1998), leading to
a proliferation of free parameters in the model.

In our model of learning object-kind labels, we assume that the
hypothesis space corresponds to a taxonomy of nested categories,
which can be constructed automatically by hierarchical clustering
(“average linkage”; Duda & Hart, 1973) on human participants’
similarity ratings (see Figure 7 later in article). Each hypothesis
corresponds to one cluster in this tree. We should emphasize that
this intuitive taxonomy is intended only as a simple but tractable
first approximation to the hypothesis space people could adopt for
learning common object labels; it is not intended to be the only
source of object-label hypotheses or to represent the structure of
hypothesis spaces for learning other kinds of words.

Probabilistic Components of the Model

Two kinds of probabilities, prior probabilities and likelihoods,
are defined over our hypothesis space of candidate word meanings.
Here we describe the general character of these probabilities,
saving the details of how they are computed in applying our model
for the section on model evaluation (following the experimental
sections).

Likelihoods. The likelihood function comes from assuming
that the observed positive examples are sampled at random (and
independently) from the true concept to be learned. Consider a
hypothesis about the word’s extension that picks out a finite set of
K objects. The likelihood of picking any one object at random from
this set of size K would be 1/K and, for n objects (sampled with
replacement), 1/Kn. This reasoning leads to the following likeli-
hood function:

p(X � h)�� 1

size(h)�
n

, (5)

if xi � h for all i, and 0 otherwise. We refer to Equation 5 as the
size principle for scoring hypotheses: Hypotheses with smaller
extensions assign greater probability than do larger hypotheses to
the same data, and they assign exponentially greater probability as
the number of consistent examples increases. This captures the
intuition that given a Dalmatian as the first example of fep, either
all Dalmatians or all dogs seem to be fairly plausible hypotheses
for the word’s extension, but given four Dalmatians as the first

four examples of fep, the word seems much more likely to refer
only to Dalmatians than to all dogs—because the likelihood ratio
of these two hypotheses is now inversely proportional to the ratio
of their sizes, raised to the fourth power. The size principle thus
explains why a learner who observes four examples of fep that all
happen to be Dalmatians will tend to infer that the word refers only
to Dalmatians rather than all dogs even though both hypotheses are
logically consistent with the examples encountered. Intuitively,
this inference is based on noticing a suspicious coincidence; for-
mally, it reflects a preference for hypotheses under which the data
are most likely to have been observed.

This proposal addresses a crucial shortcoming of traditional
deductive or hypothesis elimination approaches to word learning,
which cannot explain how inferences may change without encoun-
tering falsifying examples. It also addresses an analogous short-
coming of associative approaches, which cannot explain why one
feature may be preferred over another as the basis for a word’s
meaning, even though both features are equally correlated with the
observed usage of the word. The rationality of the size principle
depends on how widely applicable is the assumption of randomly
sampled examples, and how defeasible it is when the learner is
confronted with examples sampled in importantly different ways.
The size principle can be viewed as a softer statistical version of
the subset principle (Berwick, 1986; Wexler & Cullicover, 1980),
a classic deductive approach to learning from positive examples in
formal models of language acquisition. We discuss the connection
between Bayesian learning and the subset principle in more detail
later, when we compare alternative models with our experimental
data.

Priors. Most generally, the prior should reflect all of people’s
implicit knowledge about how words map onto meanings and how
meanings tend to be used in different contexts. Perhaps the most
important component of the prior is simply the qualitative structure
of the hypothesis space: here, the assumption that hypotheses
correspond to nodes in a tree-structured taxonomy. This assump-
tion is equivalent to assigning zero prior probability to the vast
majority of logically possible hypotheses—all other subsets of
objects in the world—that do not conform to this particular tax-
onomy.

Although a tree-structured hypothesis space is not necessary for
our Bayesian approach, a rational statistical learner can make
interesting generalizations only by adopting some bias that assigns
zero or near-zero prior probability to most logically possible
hypotheses. To see why, consider a Bayesian learner who assigned
equal priors to all logically possible hypotheses—all subsets of
entities in the domain. Then, under the size principle in the
likelihood function, the best hypothesis for any set of examples
would always be the one containing just those objects and no
others—a hypothesis that calls for no generalization at all! Gen-
eralization in word learning, or any kind of inductive learning, is
possible only with a prior that concentrates most of its mass on a
relatively small number of hypotheses.

More fine-grained quantitative differences in prior probability
will be necessary to explain the particular patterns of generaliza-
tion that people make, as well as the different patterns shown by
different groups of learners, such as adults versus children or
experts versus novices. One important kind of graded prior knowl-
edge in word learning may be a preference for labeling distinctive
clusters: More distinctive clusters are a priori more likely to have
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distinguishing names. In learning common nouns, a paramount
goal is to acquire linguistic handles for natural kind categories. The
perceptual distinctiveness of a cluster is a ready (if not infallible)
indicator of how likely that cluster is to correspond to a natural
kind. But distinctiveness (perceptual or conceptual) may also be
important in its own right, as the utility and stability of any word
will depend in part on how easily speakers can pick out entities in
its extension. Thus, we expect that some kind of preference for
distinctiveness will be a general aspect of prior probabilities in
word learning.

Summary of the basic modeling framework. Although both
priors and likelihoods can be understood on their own terms, it is
only in combination that they explain how people can successfully
learn the extensions of new words from just a few positive exam-
ples. Successful word learning requires both a constrained space of
candidate hypotheses—provided by the prior—and the ability to
reweight hypotheses according to how well they explain a set of
observed examples—provided by the likelihood. Without the con-
straints imposed by the prior, no meaningful generalizations would
be possible. Without the likelihood, nothing could be learned from
multiple examples beyond simply eliminating inconsistent hypoth-
eses. In particular, priors and likelihoods each contribute directly
to the main pattern of generalization that we described in the
introduction and that we look for in our experiments: Given just a
single example of a novel kind label, generalization to other
objects should be graded, but given several examples, learners
should apply the word more discriminatingly, generalizing to all
and only members of the most specific natural concept that spans
the observed examples. The prior determines which concepts count
as “natural,” whereas the likelihood generates the specificity pref-
erence and determines how the strength of that preference—and
thus the sharpness of generalization—increases as a function of the
number of examples.

The need for strong prior knowledge to constrain word learning
has been a major theme of previous research in the rationalist
tradition (Bloom, 2000; Markman, 1989; Pinker, 1989). The im-
portance of statistical learning across multiple examples of word–
object pairings has been stressed in associative learning ap-
proaches (e.g., Colunga & Smith, 2005; Regier, 2005). Our thesis
here is that successful word learning depends on both prior knowl-
edge and statistical inference—and, critically, on their interaction.
We have presented a theoretical framework for understanding how
this interaction functions to support rational generalization from a
few positive examples. We now turn to a series of empirical
studies mapping out how adults and children generalize words
from one or a few examples, followed by quantitative comparisons
between these judgments and the generalization patterns of our
Bayesian model.

Experiment 1

Experiment 1 tested adults in a word-learning situation. The
experiment consisted of two phases, a word-learning phase and a
similarity judgment phase. In the word-learning phase, adults were
taught novel words (e.g., “This is a blicket”) and were asked to
generalize the word to other objects. Two variables were manip-
ulated: the number of examples (one vs. three) and the range
spanned by the examples (e.g., three green peppers, three different
colored peppers, or three different kinds of vegetables). In the

similarity judgment phase, participants were asked to give simi-
larity ratings for pairs of the same objects used in the word-
learning phase. Similarity judgments will be used to yield a hy-
pothesis space for subsequent computational modeling.

Our predictions were that adults would show graded generali-
zation with one example and more all-or-none generalizations with
three examples. Furthermore, depending on the span of the three
examples, we expected that adults would generalize to the most
specific category that was consistent with the examples.

Method

Participants. Participants were 22 students from the Massa-
chusetts Institute of Technology and Stanford University, partici-
pating for pay or course credit. All participants carried out the
word-learning task and also participated in the similarity judgment
phase that followed. All participants were native speakers of
English and had normal or corrected-to-normal vision.

Materials. The stimuli were digital color photographs of 45
real objects. They were distributed across three different superor-
dinate categories (animals, vegetables, and vehicles) and, within
those, many different basic-level and subordinate-level categories.
These stimuli were divided into a training set of 21 stimuli and a
test set of 24 stimuli.

Twelve sets of labeled examples were used as training stimuli
during the experiment (Figure 3). The first three sets contained one
example each: a Dalmatian, a green pepper, and a yellow truck.
The next nine sets contained three examples each: one of the three
objects from the single-example sets (e.g., a Dalmatian), along
with two new objects that matched the first at either the subordi-
nate level (e.g., two other Dalmatians in different postures), basic
level (e.g., a terrier and a mutt), or superordinate level (e.g., a
toucan and a pig). Thus, the nine sets arose from the combination
of the three objects in the one-example set crossed with three
levels of matching specificity.

The 24 objects in the test set are shown in Figure 4. The objects
were distributed across all three superordinate-level categories (8
animals, 8 vegetables, and 8 vehicles). The set was constructed to
provide matches at all levels: subordinate (2 other Dalmatians),
basic (2 other dogs: a Labrador and a basset hound), and superor-
dinate (4 other nondog animals: a cat, a bee, a seal, and a bear), as
well as many nonmatching objects (vegetables and vehicles). Note
that the test set was exactly the same for all trials and for any set
of exemplars always contained a total of 2 subordinate-level
matches (e.g., the other Dalmatians), 4 basic-level matches (e.g.,
the Dalmatians and the other dogs), 8 superordinate-level matches
(e.g., the dogs and the other animals), and 16 nonmatching dis-
tractors (e.g., all of the other objects). We chose to include more
basic-level and superordinate-level matches because these catego-
ries have more members in the real world, although the actual ratio
(1:2:4) is only a rough estimate of the size of the categories.

Design and procedure. The first phase of the experiment was
the word-learning task. Stimuli were presented within a 15-in. �
15-in. square window on a color computer monitor, at normal
viewing distance. Participants were told that they were helping a
puppet (Mr. Frog) who speaks a different language to pick out the
objects he wants. On each trial, the participants were shown
pictures of either one or three labeled examples of a novel, mono-
syllabic word, such as fep, and were asked to pick out the other

253WORD LEARNING AS BAYESIAN INFERENCE



feps from the test set of 24 objects, by clicking on-screen with the
computer mouse. The test items were laid out in a 4 � 6 array,
with the order randomly permuted from trial to trial.

The experiment began with participants being shown all 24 test
objects, one at a time for several seconds each, to familiarize them
with the stimuli. This familiarization was followed by the instruc-
tions and 12 experimental trials. (Some participants were then
given an additional set of trials, which are not reported here.) On
the first three trials, participants saw only one example of each new
word (e.g., “Here is a fep”). On the next nine trials, they saw three
examples of each new word (e.g., “Here are three feps”). Within
each set of trials, the example sets appeared in a pseudorandom
order, with content domain (animal, vegetable, and vehicle) and
specificity (subordinate, basic, and superordinate) counterbalanced
across participants. On each trial, the participants were asked to
choose the other objects that the word applied to (e.g., the other
feps), and their responses were recorded. This phase last approx-
imately 15 min in total.

The second phase of the experiment was a similarity judgment
task. Participants were shown pictures of pairs of objects from the
word-learning task and were asked to rate the similarity of the two
objects on a scale of 1 (not similar at all) to 9 (extremely similar).
They were instructed to base their ratings on the same aspects of
the objects that were important to them in making their choices
during the word-learning phase. This instruction, along with the
placement of the similarity judgment task after the word-learning
task, was adopted in the hope of maximizing the information that
similarity judgments would provide about the hypothesis space
that participants used in word learning. Similarity judgments took

approximately 45 min to collect. Judgments were collected for all
pairs of 39 out of 45 objects—13 from each domain of animals,
vegetables, and vehicles—including all test objects and all but 6 of
the training objects (which were omitted to save time). The 6
omitted objects (2 green peppers, 2 yellow trucks, and 2 Dalma-
tians) were each practically identical to 3 of the 39 included
objects, and each was treated as identical to one of those 39 in
constructing the model of learning reported below. Each partici-
pant rated the similarity of all pairs of animals, vegetables, and
vehicles (78 � 3 judgments), along with one third of all possible
cross-superordinate pairs (animal–vegetable, vegetable–vehicle,
etc.) chosen pseudorandomly (169 judgments), for a total of 403
judgments per participant. The order of trials and the order of
stimuli were randomized across participants. These trials were
preceded by 30 practice trials (chosen randomly from the same
stimuli), during which participants were familiarized with the
range of similarities they would encounter and were encouraged to
develop a consistent way of using the 1–9 rating scale. They were
also encouraged to use the entire 1–9 scale and to spread their
judgments out evenly across the scale. The ratings were recorded,
and the average rating for each pair of objects was computed.

Results

The main results of Experiment 1 are shown in Figure 5. Adults
clearly differentiated the one-example and the three-example trials,
and they were sensitive to the span of the three examples. With one
example, adults showed graded generalization from subordinate to
basic-level to superordinate matches. These generalization gradi-

Figure 3. Twelve training sets of labeled objects used in Experiment 1, drawn from all three domains (animals,
vegetables, and vehicles) and all four test conditions (one example, three subordinate examples, three basic-level
examples, and three superordinate examples). The circled number underneath each object is used to index that
object’s location in the hierarchical clustering shown in Figure 7.
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ents dropped off more steeply at the basic level, with a soft
threshold: Most test items from the same basic-level category were
chosen, but relatively few superordinate matches were chosen.
With three examples, adults’ generalizations sharpened into a
much more all-or-none pattern. Generalizations from three exam-
ples were almost always restricted to the most specific level that
was consistent with the examples: For instance, given three Dal-
matians as examples of feps, adults generalized only to other
Dalmatians; given three different dogs (or three different animals),
adults generalized to all and only the other dogs (or other animals).

With the above overview in mind, we turn to statistical analyses
that quantify these effects. Later we present a formal computa-
tional model of this word-learning task and compare it with the

data from this experiment in more quantitative detail. All analyses
in this section were based on one-tailed t tests with planned
comparisons based on the model’s predictions. Data were col-
lapsed over the three different superordinate categories and over
the different test items within a given level of generalization
(subordinate, basic, and superordinate). For each of the four kinds
of example sets (one, three subordinate, three basic-level, three
superordinate) and each of the three levels of generalization, each
participant received a set of percentage scores measuring how
often he or she had chosen test items at that level of generalization
given that kind of example set. The means of these scores across
participants are shown in Figure 5. Because participants almost
never (less than 0.1% of the time) chose any distractors (test items
outside of an example’s superordinate category), subsequent anal-
yses did not include these scores.

Two questions were addressed with planned t tests. First, did
participants generalize further in the one-example trials compared
with the three-example subordinate trials when they were given
one versus three virtually identical exemplars? More specifically,
did adults show a significant threshold in generalization at the
basic level in the one-example trials, and did they restrict their
generalization to the subordinate level in the three-example trials?
Second, did the three-example trials differ from each other de-
pending on the range spanned by the examples? More specifically,
did participants restrict their generalization to the most specific
level that was consistent with the set of exemplars?

To investigate the first question, we compared the percentages
of responses that matched the example(s) at the subordinate, basic,
and superordinate levels. On the one-example trials, participants

Figure 4. The test set of 24 objects used to probe generalization of word meanings in Experiment 1. For each
training set in Figure 3, this test set contains two subordinate matches, two basic-level matches, and four
superordinate matches. The circled number underneath each object is used to index that object’s location in the
hierarchical clustering shown in Figure 7.

Figure 5. Adults’ generalization of word meanings in Experiment 1,
averaged over domain. Results are shown for each of four types of example
set (one example, three subordinate [sub.] examples, three basic-level
examples, and three superordinate [super.] examples). Bar height indicates
the frequency with which participants generalized to new objects at various
levels. Error bars indicate standard errors.
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chose more subordinate (96%) and basic-level matches (76%) than
superordinate matches (9%); the difference between the first two
levels, 20%, is much smaller than the difference between the latter
two levels, 67%: t(73) � –10.79, p � .0001. In contrast, when
presented with three very similar exemplars from the same subor-
dinate category, participants chose more subordinate matches
(95%) than either basic-level (16%) or superordinate matches (1%)
( p � .0001 for both comparisons). Similar comparisons were
made between one example and three basic-level or three
superordinate-level examples. When presented with three exam-
ples from the same basic-level category, participants generalized
even more to the basic level as compared with the one-example
trials (76% vs. 91%). When presented with three examples from
the same superordinate category, participants generalized to almost
all exemplars from the superordinate category (87%).

As our model predicts (discussed below), given three examples
spanning a single subordinate-level category, the generalization
gradient should relate to the one-example trials as follows: equal
generalization at the subordinate level, a large decrease in gener-
alization at the basic level, and a small decrease in generalization
at the superordinate level. Given three examples spanning a basic-
level category, the generalization gradient should be modified as
follows: equal generalization at the subordinate level, an increase
in basic-level generalization, and a small decrease in
superordinate-level generalization. Given three examples spanning
a superordinate-level category, the generalization function should
be modified as follows: equal generalization at the subordinate
level and increases in both basic-level and superordinate-level
generalization. All of these predictions follow from the model’s
general tendency to be relatively uncertain about the correct level
of generalization when given one example and to be more certain
when given three examples. A set of two-tailed t tests were
conducted to test these predictions by comparing the mean per-
centages of all relevant pairs of conditions in adults’ generaliza-
tions. The results of all tests were consistent with the model
predictions, except for a nonsignificant difference in superordinate
generalization between the one example and three basic-level
examples conditions. This difference was in the predicted direc-
tion, and it was also predicted to be small, so a nonsignificant
result is not surprising.

To investigate the second question, we tested a series of specific
predictions from our model (discussed below), about how gener-
alizations given three examples at a certain level of specificity
should differ from each other. A set of planned comparisons
addressed this question by comparing the percentages of response
at each level. Given three examples from the same subordinate-
level category, the model predicts a sharp drop between
subordinate-level generalization and basic-level generalization
(95% vs. 16%, p � .0001). Given three examples from the same
basic-level category, the model predicts a sharp drop between
basic-level generalization and superordinate-level generalization
(91% vs. 4%, p � .0001). Given three examples from the same
superordinate category, the model predicts that generalization
should include all exemplars from that superordinate category
(94%, 91%, and 87%, ns).

The similarity data are analyzed later in the article, when we
describe the fits of our Bayesian learning model. The similarities
will be used to construct the model’s hypothesis space.

Discussion

Adults clearly generalized differently on the one-example and
the three-example trials. With one example, they showed graded
generalization from subordinate to basic-level to superordinate
matches. In addition, adults showed a basic-level preference: They
generalized to all of the other exemplars from the same basic-level
category but generalized much less to the superordinate category.
With three examples, adults made generalizations in more of an
all-or-none manner. They restricted their generalizations to the
most specific level that was consistent with the examples.

Experiment 2

In Experiment 2 we investigated how 3- and 4-year-old children
learn words for subordinate, basic-level, and superordinate cate-
gories. Children were taught novel words for object categories and
were asked to generalize these words to new objects. As in
Experiment 1, two factors were manipulated: the number of ex-
amples labeled (one vs. three) and the range spanned by the
examples (e.g., three Dalmatians, three kinds of dogs, or three
kinds of animals).

Method

Participants. Participants were thirty-six 3- and 4-year-old
children (mean age 4 years 1 month, ranging from 3 years 6
months to 5 years 0 months) approximately evenly divided by
gender. All participants were recruited from the greater Boston
area by mail and subsequent phone calls. Most children were
middle-class, non-Hispanic White; about 10% were Asian, African
American, or Hispanic. The children received a token gift (i.e., a
sticker) after the study. Five children were excluded because of
unwillingness to play the game with the experimenter. English was
the primary language spoken at home for all children.

Materials. The stimuli were the same 45 objects as in Exper-
iment 1, but the children were presented with the real toy objects
as opposed to photographs.

Design and procedure. Each child was randomly assigned to
one of two conditions: the one-example condition or the three-
example condition. Children in the one-example condition always
saw one example of each word, whereas children in the three-
example condition always saw three examples of each word. Each
child participated in a total of three trials, one from each of the
three superordinate categories. On each trial in the three-example
condition, the examples spanned a different level of generality
(subordinate, basic level, or superordinate).

Children were introduced to a puppet, Mr. Frog, and were told
that they were helping the puppet, who speaks a different lan-
guage, to pick out the objects he wants. The test array of 24 objects
was randomly laid out in front of the child and the experimenter.
The experiment began with a dialogue as follows. The experi-
menter held out the puppet and said to the child,

This is my friend Mr. Frog. Can you say “hello” to Mr. Frog? [Child
says “Hello.”] These are all of Mr. Frog’s toys, and he would like you
to play a game with him. Would you like to play a game with Mr.
Frog? [Child says “Yes.”] Good! Now, Mr. Frog speaks a different
language, and he has different names than we do for his toys. He is
going to pick out some of them, and he would like you to help him
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pick out the others like the ones he has picked out, okay? [Child says
“Okay.”]

Three novel words were used: blick, fep, and dax.
One-example condition. On each trial, the experimenter

picked out an object from the array (e.g., a green pepper) and
labeled it: “See? A blick.” Then the child was told that Mr. Frog
is very picky. The experimenter said to the child, “Now, Mr. Frog
wants you to pick out all the blicks from his toys, but he doesn’t
want anything that is not a blick. Remember that Mr. Frog wants
all the blicks and nothing else. Can you pick out the other blicks
from his toys?” The child was then allowed to choose among the
24 test objects to find the blicks and put them in front of Mr. Frog.
If a child picked out only one object, the experimenter reminded
him or her, “Remember Mr. Frog wants all the blicks. Are there
more blicks?” If a child picked out more than one object, nothing
more was said to encourage him or her to pick out more toys. At
the end of each trial, the experimenter said to the child, “Now, let’s
put all the blicks back and play the game again. Mr. Frog is going
to pick out some more toys, and he would like you to help him pick
out others like the ones he picks, okay?” Then another novel word
was introduced as before.

Each child participated in three trials, each with an example
drawn from one of the three superordinate categories: a Dalmatian
(animal), a green pepper (vegetable), or a yellow truck (vehicle).
The order of the trials and the novel words used (blick, fep, and
dax) were counterbalanced across participants.

Three-example condition. On each trial, the procedure was the
same as in the one-example trial with the following important
difference. The experimenter first picked out one object and la-
beled it for the child (e.g., “See? A fep.”). Then she picked out two
more objects, one at a time, and labeled each one for the child (e.g.,
“Look, another fep” or “Look, this is a fep”). Three factors—the
superordinate category (animal, vegetable, and vehicle), the range
spanned by the examples (subordinate, basic, and superordinate),
and the novel word used (blick, fep, and dax)—were crossed
pseudorandomly and counterbalanced across participants. Each
level of each factor appeared equally often in the first, second, and
third trials of the experiment.

Results

The patterns of generalization found were qualitatively similar
to those found with adults in Experiment 1, and the quantitative

analyses followed essentially the same logic. Analyses were based
on one-tailed t tests with planned comparisons. We collapsed
across superordinate categories, novel words, and trial orders. For
each type of example set children were shown, they received a set
of percentage scores measuring how often they had chosen test
items at each of three levels of generalization (subordinate, basic,
and superordinate). The means of these scores across participants
are shown in Figure 6a. Children in the one-example condition
each received just a single set of scores, because their three trials
all featured the same kind of example set. Children in the three-
example condition each received three sets of scores, one for each
trial, because each trial featured a different kind of example set
(three examples clustering at the subordinate, basic, or superordi-
nate level). Because no child chose any distractors, subsequent
analyses did not include these scores.

The same two questions as in Experiment 1 were addressed here
with planned t tests. First, did children generalize differently in the
one-example trials compared with the three-example trials in each
case? Of importance, did they generalize differently given one
versus three virtually identical exemplars? More specifically, did
children show a significant threshold in generalization at the basic
level in the one-example trials, and did they restrict their general-
ization to the subordinate level in the three-example trials? Second,
did the three-example trials differ from each other depending on
the range spanned by the examples? More specifically, did chil-
dren restrict their generalization to the most specific level that was
consistent with the set of exemplars?

To investigate the first question, we compared the percentages
of responses that matched the example(s) at the subordinate, basic,
and superordinate levels. On the one-example trials, participants
chose more subordinate (85%) and basic-level matches (31%) than
superordinate matches (3%) ( p � .0001 for both comparisons). In
contrast, when presented with three very similar exemplars from
the same subordinate category, participants chose more subordi-
nate matches (83%) than either basic-level (13%) or superordinate
matches (3%) ( p � .0001 for both comparisons). Similar compar-
isons were made between one example and three basic-level or
three superordinate-level examples. When presented with three
examples from the same basic-level category, participants did not
generalize more to the basic level as compared with the one-
example trials (31% vs. 47%, ns). When presented with three
examples from the same superordinate category, participants gen-

Figure 6. Children’s generalization of word meanings in Experiments 2 and 3, averaged over domain. Results
are shown for each of four types of example set (one example, three subordinate [sub.] examples, three
basic-level examples, and three superordinate [super.] examples). Bar height indicates the frequency with which
participants generalized to new objects at various levels. Error bars indicate standard errors.
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eralized more to both the basic level and the superordinate level
(31% vs. 53%, p � .001; 3% vs. 43%, p � .0001).

To investigate the second question, we tested a series of pre-
dictions based on our model, as in Experiment 1. A set of planned
comparisons addressed this question by comparing the percentages
of response at each level. Given three examples from the same
subordinate-level category, the model predicts a sharp drop be-
tween subordinate-level generalization and basic-level generaliza-
tion (83% vs. 13%, p � .0001). Given three examples from the
same basic-level category, the model predicts a sharp drop be-
tween basic-level generalization and superordinate-level generali-
zation (47% vs. 15%, p � .0001). Given three examples from the
same superordinate-level category, the model predicts that gener-
alization should include all exemplars from that superordinate
category (86%, 53%, and 43%). Children’s performance was in
broad agreement with the predictions.

Discussion

The 3- and 4-year-old children’s performance was in broad
agreement with our predictions. On the one-example trials, they
showed graded generalization. It is interesting to note that they did
not show a strong basic-level preference. On the three-example
trials, the children modified their generalizations depending on the
span of the examples. Their generalizations were consistent with
the most specific category that included all of the examples.
However, the children’s data were much noisier than those of the
adults. Several methodological reasons may account for these
differences. The overall level of response was much lower for
children. Perhaps the task of freely choosing among 24 objects was
too demanding for children of this age, and some of them may
have been reluctant to choose more than a few objects. Also, not
all subordinate classes seemed to be equally salient or interesting
to the children. The Dalmatians, as a class, seemed to be unusually
interesting to some children, perhaps because of their distinctive
coloration or the fact that they came from a line of toys based on
a currently popular children’s animated feature film. The green
peppers, as a class, seemed not very salient to some children,
perhaps because they differed from other members of the same
basic-level class only in their color (and their coloration was not
nearly as striking as the Dalmatians).

In the next experiment, we present children with each of 10
objects and ask for a yes–no response. This modification was
meant to ensure that all children would provide us with judgment
on each of the test objects. We also changed two of the subordinate
classes slightly, in order to equalize salience of the subordinates
across the animals, vegetables, and vehicles.

The critical prediction made by our Bayesian framework con-
cerned whether the learner’s generalization function differed when
labeling a single example versus three independent examples.
However, given that each object was labeled once, the three-
example trials contained three times as many labeling events as the
one-example trials. Thus, we were not able to tell whether the
learner kept track of the number of independent examples labeled
or simply the number of labeling events (i.e., word–object pair-
ings). This is particularly important because some associative
models (e.g., Colunga & Smith, 2005; Regier, 2005) have sug-
gested that children’s word learning is built on keeping track of
co-occurrences between words and object percepts. To distinguish

our Bayesian approach from conventional associative approaches,
it is important to tease apart these possibilities. In the next study,
we equate the number of labeling events between the one-example
and three-example conditions by labeling the single example ob-
ject in the one-example condition three times, whereas each ex-
ample object in the three-example condition is labeled just once.

Experiment 3

With this experiment we sought to replicate and extend the
results of Experiment 2 with slight modifications to the stimuli and
two important methodological changes. First, we equated the num-
ber of labeling events in the one-example and three-example
conditions. Second, instead of letting children choose among the
24 target objects, the experimenter chose 10 of these objects and
asked for the child’s judgment in each case.

Method

Participants. Participants were thirty-six 3- and 4-year-old
children (mean age 4 years 0 months, ranging from 3 years 6
months to 5 years 0 months), approximately evenly divided by
gender. Participants were recruited as in Experiment 2. Most
children were middle-class, non-Hispanic White; about 10% were
Asian, African American, or Hispanic.

Materials. The stimuli were the same 45 objects as in Exper-
iment 2, except that the Dalmatians were replaced by terriers and
the green peppers were replaced by chili peppers. Members of each
subordinate class were now distinguished from other objects in the
same basic-level class by both shape and color features of mod-
erate salience.

Design and procedure. The procedure was identical to that of
Experiment 2 except for the following. In the one-example con-
dition, each object was labeled three times. For example, the
experimenter would pick out a green pepper, show it to the child,
and say, “See? A fep.” She would then put the pepper down on the
floor and pick it up again, saying, “Look, a fep.” She would then
put it down again and pick it up a third time, saying, “It’s a fep.”
The experimenter made sure that the child was following her
actions so it was clear that the same pepper had been labeled three
times.

In the three-example condition, each object was labeled exactly
once. Again, the experimenter monitored the child’s attention to
ensure that joint attention had been established before the labeling
event for each object.

Although all 24 test objects were laid out in front of the child,
the experimenter chose 10 of these objects to ask about. The
experimenter picked up each of the 10 objects and asked the child,
“Is this a fep?” The target set included 2 subordinate-level
matches, 2 basic-level matches, 4 superordinate-level matches, and
2 distractors.

Results

The main results of Experiment 3 are shown in Figure 6b. A
significance level of .05 was used in all statistical analyses. Pre-
liminary analyses found no effects of gender, the order of domain,
or the order of target type. Subsequent analyses collapsed over
these variables. Only 2 children chose any of the distractors in this
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experiment on one trial, and thus all analyses excluded the dis-
tractor scores.

The same two questions as in Experiments 1 and 2 were ad-
dressed with planned t tests. First, did children behave differently
in the one-example trials compared with the three-example trials?
Of importance, did they generalize differently given one versus
three virtually identical exemplars? Second, did the three-example
trials differ from each other depending on the span of the exam-
ples?

To investigate the first question, we compared the percentages
of responses that matched the example(s) at the subordinate, basic,
and superordinate levels. On the one-example trials, participants
chose more subordinate (96%) and basic-level matches (40%) than
superordinate matches (17%) ( p � .001 for both comparisons). In
contrast, when presented with three very similar exemplars from
the same subordinate category, participants chose more subordi-
nate matches (94%) than either basic-level (6%) or superordinate
matches (0%) ( p � .0001 for both comparisons). Similar compar-
isons were made between one example and three basic-level or
three superordinate-level examples. When presented with three
examples from the same basic-level category, participants gener-
alized more to the basic level as compared with the one-example
trials (75% vs. 40%, p � .005). When presented with three
examples from the same superordinate-level category, participants
generalized more to both the basic level and the superordinate
level (88% vs. 40%, p � .0001; 62% vs. 17%, p � .0001).

To investigate the second question, we tested a series of pre-
dictions based on our model, as in Experiments 1 and 2. As can be
seen in Figure 6b, with the modifications on methodology, chil-
dren’s performance was very consistent with our predictions.
Given three examples from the same subordinate-level category,
the model predicts a sharp drop between subordinate-level gener-
alization and basic-level generalization (94% vs. 5%, p � .0001).
Given three examples from the same basic-level category, the
model predicts a sharp drop between basic-level generalization and
superordinate-level generalization (75% vs. 8%, p � .0001). Given
three examples from the same superordinate category, the model
predicts that generalization should include all exemplars from that
superordinate category (94%, 88%, and 62%).

Discussion

With a simplified testing procedure, preschool children gener-
alized new words in ways that looked more like the adults in
Experiment 1. However, they still showed a much lower tendency
for basic-level generalization given a single example, which sug-
gests that adults’ strong tendency for one-shot basic-level gener-
alization may reflect a convention acquired through extensive
experience with learning and using words. The differences in
generalization between the one-example and three-example con-
ditions of Experiment 2 persisted (or became stronger) here, even
though the number of labeling events was equated across condi-
tions. This finding suggests that preschool children make statistical
inferences about word meanings that are computed over the num-
ber of examples labeled, not just the number of word–object
pairings.

Discussion of Experiments

In order to test specific predictions of the Bayesian framework,
our experiments investigated the effects of number of examples
(one vs. three), span of examples presented to our participants
(subordinate vs. basic vs. superordinate level), and number of
labeling events (one object labeled three times vs. three objects
labeled once each). We also tested both adults and children. Each
of these experimental design features sheds new light onto the
process of word learning.

By varying the number of examples, we were able to examine
the effects of multiple examples on generalization. We found that
word learning displays the characteristics of a statistical inference,
with both adult and child learners becoming more accurate and
more confident in their generalizations as the number of examples
increased. This effect was not the typical gradual learning curve
that is often associated with statistical learning. Rather, there was
a strong shift in generalization behavior from one to three exam-
ples, reflecting the rational statistical principle that observing the
span of three independent, randomly sampled examples warrants a
sharp increase in confidence about which hypothesis for general-
ization is correct. Both adult and child learners appear to be
sensitive to suspicious coincidences in how the examples given for
a novel word appear to cluster in a taxonomy of candidate cate-
gories to be named.

By varying the span of examples, we found that labels for
subordinate and superordinate categories may not be as difficult
for children to learn as suggested by previous studies. When given
multiple examples, preschool children are able to learn words that
refer to different levels of the taxonomic hierarchy, at least within
the superordinate categories of animal, vehicle, and vegetable.
Special linguistic cues or negative examples are not necessary for
learning these words.

By varying the number of labeling events independent of the
number of examples, we were able to explore the ontological
underpinning of children’s word learning. We found evidence that
preschool children keep track of the number of instances labeled
and not simply the number of co-occurrences between object
percepts and labels. Word learning appears to be fundamentally a
statistical inference, but unlike standard associative models, the
statistics are computed over an ontology of objects and classes,
rather than over surface perceptual features.

Last, we found an interesting difference between adults and
preschool children in how likely they were to extend novel words
from one example to other instances in the same basic-level
category: Adults showed much greater basic-level generalization
than did children. This is consistent with Callanan et al.’s (1994)
finding that children do not show robust basic-level generalization
when taught unfamiliar words. Our results are broadly consistent
with those of Callanan et al., in that they suggest that a basic-level
bias may not be part of the foundations for word learning. Rather,
such a bias may develop as children learn more about general
patterns of word meanings and how words tend to be used. Further
research using a broader range of categories in the same experi-
mental paradigm developed here will be necessary to establish a
good case for this developmental proposal. If further research
supports the notion that a basic-level bias develops through expe-
rience, we expect that this development could also be modeled as
an instance of Bayesian learning, in which people come to realize
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that basic-level object labels are used much more frequently than
subordinate or superordinate labels.

It is important to note a few caveats. We have argued that in our
experiments preschool children learned words for categories at
multiple levels of the taxonomic hierarchy—superordinate, basic,
and subordinate—but it is an open question whether children
understand these categories as part of a hierarchically organized
system of kinds. As in most previous studies, we did not include an
explicit test for the child’s understanding of class inclusion rela-
tions, which is often taken to be the ultimate test for understanding
hierarchical structures. C. L. Smith (1979) asked 4- to 6-year-old
children inference questions based on class inclusion and found
that 4-year-olds showed a fragile but statistically reliable under-
standing. It is possible that children simply use the span of per-
ceptual similarity as a first approximation for larger versus smaller
categories that are akin to a set of nested categories in the mature
conceptual system. This alternative possibility assumes that chil-
dren may have a somewhat different hypothesis space than adults—
instead of having a nested set of categories, children may have
mapped the words onto regions of perceptual space (e.g., Shepard,
1987; Tenenbaum & Griffiths, 2001), some broad and some narrow.

One indication that children may have had a somewhat different
hypothesis space than adults is their pattern of generalization with
superordinates. Given three examples that spanned a
superordinate-level category, children chose superordinate
matches most of the time, and far more often than with other
example sets, but still less often than adults (62% of the time in
Experiment 3 vs. 87% in Experiment 1). There are several possible
explanations for this finding, which could be explored in future
work. Children may simply have had a different tree-structured
hypothesis space than adults—a stable hypothesis space with sta-
ble superordinate-level hypotheses that just happen not to include
exactly the same objects as adults’. Children could also have less
stable hypothesis spaces. There could be more variance across
children in the hypothesis spaces they use, or each individual child
might not have a single tree-structured hypothesis space so clearly
articulated as adult learners might have. Children might also need to
acquire deeper theoretical knowledge about superordinate categories
(e.g., biologically relevant facts, such as all animals breathe and
grow—part of the intension of the word) before these categories can
become stable hypotheses for generalizing word meanings.

Another potential concern is that in our experiments we used
only relatively familiar categories. It is possible that children had
already acquired the superordinate- or subordinate-level terms and
simply translated those words into our nonsense labels during the
experiments. This is unlikely, because Waxman (1990) found that
only about half of her 4-year-old children knew the superordinate
term animal, and both vegetable and vehicle are less commonly
known to preschoolers. In our sample, the 3-year-olds (who pre-
sumably were less likely to know these words) and the 4-year-olds
did not behave differently on our task. Some of the subordinate-
level concepts we used had an existing label (e.g., basset hound or
Dalmatian), whereas others did not (e.g., yellow truck or green
pepper). Thus, it is unlikely that the children simply translated the
new words into words they already knew. Still, future work using
a broader range of categories and novel categories could help to
clarify the generality of our findings. Xu and Tenenbaum (2007)
and Schmidt and Tenenbaum (2006) have studied word learning
with different sets of novel objects, each of which can be classified

into a tree-structured hierarchy of object kinds, and found behavior
consistent with the Bayesian framework we present here.

Last, we stress that when we say these words are not too hard
to learn from examples, we are not saying that all aspects of
these words are easy to learn. In both our experiments and our
model, we have addressed word meaning only in terms of
extension, that is, which entities the word refers to. Other
aspects of word meaning having more to do with the word’s
intension, such as the essence of the concept labeled by the
word, how that concept relates to a domain theory, and how it
relates to other concepts, may not be so easily grasped from just
a few examples. (See Bloom, 2000, for a discussion of the
differences between extensions and intensions in word mean-
ing.) In developing models based on statistical inference, one
most naturally begins by focusing on the extension of words,
because that is the component of meaning with the most directly
measurable statistical consequences. However, our framework
is not limited to extensions. Other aspects of word meaning also
have statistical consequences for how and when a word is likely
to be used and, thus, in principle could be learned from obser-
vations given an appropriate hypothesis space.

If category labels at different levels of the conceptual hierarchy
are not very difficult to learn, as we have suggested here, why is
it that in young children’s early vocabulary we tend to see more
basic-level category labels? This is, after all, a critical observation
that motivated the standard picture of how children acquire kind
terms at multiple levels of the taxonomy. Several factors may be
important in explaining the time lag between acquiring basic-level
labels and acquiring subordinate- and superordinate-level labels.
First, subordinate- and superordinate-level labels may require mul-
tiple examples. If each example is labeled on different occasions
and spread out in time, children may forget the examples over
time. Second, subordinate- and superordinate-level category labels
are used much less frequently in adult speech, and so the relevant
examples are harder to come by. Middle-class American parents
tend to point to objects and label them with basic-level terms. Last,
superordinates are often used to refer to collections (Markman,
1989), and so children may be misled by the input in interpreting
these words. In our studies, we have presented children with a
simplified learning situation in order to uncover the underlying
inferential competence that guides them in—but is not exclusively
responsible for—real-world performance.

Evaluating a Bayesian Model of Learning Object-Kind
Labels

In this section we assess the quantitative fit between a Bayesian
model of word learning and participants’ generalization judgments in
the kind-label learning experiments just presented. We also consider
the predicted generalization patterns of several alternative models,
including weaker versions of the full Bayesian approach as well as a
number of non-Bayesian models intended to capture the essences of
the major hypothesis elimination and associative learning approaches.

Constructing the Hypothesis Space

On the basis of participants’ similarity judgments in Exper-
iment 1, we generated a hierarchical cluster tree to approximate
the taxonomy of nested categories (Figure 7). Each internal
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node of the tree corresponds to a cluster of objects that are on
average more similar to each other than to other nearby objects.
The height of each node represents the average pairwise dis-
similarity of the objects in the corresponding cluster. The length
of the branch above each node measures how much more
similar on average are that cluster’s members to each other than
to objects in the next nearest cluster—that is, how distinctive
that cluster is.

Each of the main classes underlying the choice of stimuli
corresponds to a node in the tree: vegetable (EE), vehicle (HH),
animal (JJ), pepper (J), truck (T), dog (R), green pepper (F),
yellow truck (G), and Dalmatian (D). Most of these clusters are
highly distinctive (i.e., well separated from other clusters by
long branches), as one would expect for the targets of kind
terms.2 Other easily describable nodes include Cluster U, con-
taining all and only the construction vehicles (tractor, bull-
dozer, and crane), and Cluster II, containing all and only the

mammals. The only clusters that do not appear to correspond to
conceivably lexicalizable concepts are two that are defined only
by subtle perceptual variation below the subordinate level:
Cluster A, including two of the three Dalmatians, and Cluster B,
including two of the three green peppers. We take each cluster
to correspond to one hypothesis in H, with the exception of
these two clusters below the subordinate level. In so doing, we
are assuming that each learner maintains only a single hypoth-
esis space and that its structure does not change as new words

2 A notable exception is the cluster corresponding to trucks (T), which is
barely separated from the next highest cluster (V), which contains the
trucks plus a long yellow school bus. Cluster V itself is fairly well
separated from the next highest cluster, suggesting that the perceptually
basic category here is not quite trucks but something more like “truck-
shaped motor vehicles.”

Figure 7. Hierarchical clustering of similarity judgments yields a taxonomic hypothesis space for Bayesian
word learning. Letter codes refer to specific clusters (hypotheses for word meaning): vegetable (EE), vehicle
(HH), animal (JJ), pepper (J), truck (T), dog (R), green pepper (F), yellow truck (G), and Dalmatian (D). The
clusters labeled by other letter codes are given in the text as needed. Numbers indicate the objects located at each leaf
node of the hierarchy, keyed to the object numbers shown in Figures 3 and 4. The height of a cluster, as given by the
vertical axis on the left, represents the average within-cluster dissimiliarity of objects within that cluster.
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are learned. We are also assuming that a single tree structure is
sufficient to model the hypothesis spaces of all word learners.
Although these assumptions greatly simplify modeling, none is
a fundamental commitment of our theoretical framework, and
we expect that they will need to be relaxed in future work.

Computing Numerical Values for Likelihoods and Priors

For learning common nouns under the taxonomic constraint, the
geometry of the cluster tree suggests general-purpose procedures
for computing both likelihoods and priors. These methods are
convenient for modeling purposes, but we view them as, at best,
just a first approximation to the knowledge people actually bring to
bear on this problem. The crucial geometrical feature is the height
of node h in the tree, which is scaled to lie between 0 (for the
lowest node) and 1 (for the highest node) and measures the average
dissimilarity of objects within h.

The likelihood of each hypothesis is a function of the size of its
extension. Although we do not have access to the “true” size of the
set of all dogs in the world, or all vegetables, we do have access to a
psychologically plausible proxy, in the average within-cluster dissim-
ilarity or cluster height in the tree. Thus, equating node height with
approximate cluster size, we have for the likelihood the following:

p(X � h) � � 1

height(h) � ε�
n

, (6)

if xi � h for all i, and 0 otherwise. We add a small constant ε �
0 to height(h) to keep the likelihood from going to infinity at the
lowest nodes in the tree (with height 0). The exact value of ε is not
critical. We generally find best results with ε around .05 or .10; the
simulations in this article use ε � .05. (In Figure 7, all nodes are
shown at a height of .05 above their true height, reflecting this
value of ε.) Larger values of ε may also be appropriate in situations
where the sizes of the concepts are not apprehended so distinctly
by the learner. Likelihoods will be monotonically related to heights
in the cluster tree for any finite ε � 0, but they become increas-
ingly uniform (and hence uninformative) as ε increases.

A preference for cluster distinctiveness in the prior can be
captured by taking p(h) to be proportional to the branch length
separating node h from its parent:

p(h) � height(parent[h]) � height(h). (7)

This measure is maximized for clusters of entities that have high
average within-cluster similarity relative to their similarity to the most
similar entities outside the cluster. For example, in Figure 7, the class
containing all and only the dogs (R) is highly distinctive, but the
classes immediately under it (P) or above it (Z) are not nearly as
distinctive; accordingly, R receives a much higher prior than P (pro-
portional to .131 vs. .023). This example shows why a distinctiveness
bias in the prior is necessary. In terms of the likelihood, Hypothesis P
(effectively, dogs with significant body area colored white) will
typically be slightly preferred to Hypothesis R (effectively, all dogs),
because P is slightly smaller. Yet the strong distinctiveness prior favoring
R will ensure that this much more conceptually natural hypothesis re-
ceives the higher posterior probability when a learner observes random
examples of dogs (which will tend to fall under both hypotheses).

In general, distinctiveness will be high for basic-level catego-
ries, but a prior probability based on distinctiveness is not the same

thing as a basic-level bias. Distinctiveness may also be high for
other conceptually natural clusters, such as superordinate or sub-
ordinate categories. In Figure 7, the superordinate categories are
significantly more distinctive than any other categories, which
accords with the intuition that most fundamental differences be-
tween contrasting ontological categories occur at the superordinate
level (e.g., animal vs. vehicle), rather than at the basic or subor-
dinate level (e.g., dog vs. cat or Dalmatian vs. terrier). Independent
of this general preference for distinctiveness, people may also have
a preference to map new words onto basic-level categories
(Golinkoff, Mervis, & Hirsh-Pasek 1994; Markman, 1989). The
existence of a basic-level bias in children’s learning is a matter of
controversy (Callanan et al., 1994; Waxman, 1990), but the orig-
inal studies of Rosch et al. (1976) certainly provide strong reasons
to think that such a bias would be useful, over and above the
preference for distinctiveness we have already introduced. Rosch
et al. found that in spontaneous labeling of objects, adults almost
always use basic-level names. This preference was much more
extreme than the other basic-level preferences Rosch et al. reported
based on nonlinguistic (perceptual or motor action) criteria, which
suggests that in learning kind labels, it would be appropriate to
adopt a basic-level bias over and above a general bias toward more
natural (e.g., more distinctive) concepts. Note that this basic-level
bias does not reflect learners’ beliefs about which word meanings are
more natural but rather reflects their beliefs about how words (spe-
cifically, kind labels) tend to be used. The latter belief, as Rosch et al.
showed, is strongly supported in naming statistics. The former belief
would not be statistically valid: The majority of kind labels do not in
fact pick out basic-level concepts, because there are many more
subordinate kinds than basic-level kinds that receive labels.

To test the utility of this sort of basic-level bias in word learning,
we consider two versions of our model: one that contains no
preference to map words onto the basic level other than as instan-
tiated in the distinctiveness prior (Equation 7) and one that con-
tains an extra bias in the prior probability for just those hypotheses
corresponding to basic-level words in English (dog, truck, and
pepper in Figure 7). For those hypotheses, the basic-level bias is
implemented by replacing p(h) with � times its value given in
Equation 7, where � is a single free numerical parameter that will
be adjusted to provide the best fit to the data.3

3 We should note that our use of the term basic-level bias differs from
many uses in the literature. Typically it is unclear whether a putative
word-learning bias, such as a basic-level bias, refers to a behavioral
tendency or to an aspect of mental representation: a greater prior degree of
belief in some concepts (e.g., basic-level kinds) as candidate word mean-
ings. Our interest primarily concerns the latter, and we would like to
reserve the term bias for that sense, but empirical studies have mostly
focused on the former. It is an empirical phenomenon, demonstrated in
previous studies (Callanan et al., 1994; Waxman, 1990) as well as in our
studies here, that generalization of a taxonomic label from a single example
appears to follow a gradient falling off around the basic level. That is,
children and adults tend to extend a novel label almost always to new
objects matching at the subordinate level, much of the time (between 40%
and 80% in our studies) to objects matching only at the basic level, and
rarely to objects matching only at the superordinate level. Instead of
referring to this behavioral tendency as a basic-level bias, we refer to it as
one-shot basic-level generalization, to distinguish it from possible cogni-
tive structures that might be proposed to account for it.
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Model Results

We first consider the basic Bayesian model using the distinc-
tiveness prior, Equation 7. Figure 8a compares p(y � C|X) com-
puted from this model with the generalization judgments of our
adult participants (Figures 5 and 8d), averaged across participants,
superordinate classes (animal, vehicle, and vegetable), and test
items within a given level of generalization. On the averaged data
shown in Figure 8d, the model achieves a reasonable quantitative
fit (r � .89).4 It also captures the main qualitative features of the
data: graded generalization given one example, and more all-or-
none, rulelike generalization at the level of the most specific
consistent natural concept given three examples. However, there
are also several differences between the model’s generalizations
and people’s judgments: The model produces too little generali-
zation to basic-level matches given one example or three subordi-
nate examples and too much generalization to superordinate
matches given three basic-level examples.

Figure 8b shows the fit of the Bayesian model after incorporat-
ing a bias in the prior that favors the three basic-level hypotheses.
The strength of the basic-level bias is a free parameter, here set to
� � 10. With this one free parameter, the model now provides an
almost perfect fit to the average data (r � .99). All of the main
qualitative trends are captured, including those not accounted for
by the Bayesian model without a basic-level bias (in Figure 8a).
These results suggest that, at least for adults, hypotheses for word
learning are biased specifically toward basic-level object catego-
ries, over and above a general preference for more distinctive
categories that was captured in the branch length prior (Equation 7
and Figure 8a).

A different picture emerges when we compare these two ver-
sions of the Bayesian model with preschool-age children’s gener-
alizations (Experiment 3; Figures 6b and 8c). In some ways,
children’s performance looks more like the Bayesian model’s
predictions without the basic-level bias, particularly in the shift
from one example to three subordinate examples. Correlation
coefficients for the two models are similar (r � .91 without the

basic-level bias, r � .89 with the basic-level bias). Because the
additional parameter � does not contribute significantly to the
variance accounted for and leads to a fit that is qualitatively worse
in some ways, these results suggest that child word learners may
not have the strong basic-level bias that adults exhibit. Their
tendency to extend new words to basic-level matches is much
weaker than that of adults and may be explained simply as the
combination of Bayesian hypothesis averaging (Equation 3) with a
general preference for hypotheses corresponding to distinctive
categories (Equation 7). We return to this issue in the discussion
below.

Comparison With Other Models

Figure 9 illustrates respectively the complementary roles played
by the size principle (Equations 5 and 6) and hypothesis averaging
(Equation 3) in the Bayesian framework. If instead of the size
principle we weight all hypotheses strictly by their prior (including
the basic-level bias), Bayes reduces to a similarity-like feature-
matching computation that is much more suited to the generaliza-
tion gradients observed given one example than to the all-or-none
patterns observed after three examples (Figure 9a). Mathemati-
cally, this corresponds to replacing the size-based likelihood in
Equations 5 and 6 with a simpler measure of consistency: p(X|h) �
1 if the examples X are consistent with the hypothesis h (i.e., xi �
h for all i) and p(X|h) � 0 otherwise. Tenenbaum and Griffiths
(2001) called this approach weak Bayes, because it uses only a
weak binary measure of consistency in the likelihood rather than
the strong assumption of randomly sampled examples implicit in
using the size principle. Essentially this algorithm has been pro-

4 All correlation (r) values in this section were computed using only
judgments for test items within the same superordinate class as the ob-
served examples. Participants almost never chose test items that crossed
superordinate boundaries, and most models give these test items zero or
near-zero probability of generalization.

Figure 8. Predictions of the Bayesian model, both with and without a basic-level bias, compared with the data
from adults in Experiment 1 and those from children in Experiment 3. Sub. � subordinate; super. �
superordinate.

263WORD LEARNING AS BAYESIAN INFERENCE



posed by Mitchell (1997), Haussler, Kearns, and Schapire (1994),
and Shepard (1987).

If instead of averaging the predictions of all consistent hypoth-
eses we base generalization on just the single most probable
hypothesis, Bayes reduces to an all-or-none rulelike computation.
Priors (again including the basic-level bias) and likelihoods coop-
erate to rank hypotheses, but only the highest ranking hypothesis—
rather than a probability distribution over hypotheses—is used in
generalization. Mathematically, this corresponds to replacing hy-
pothesis averaging in Equation 3 with a simpler decision rule:
p(y � C|X) � 1 if y � h*, and 0 otherwise, where h* is the
hypothesis with maximal posterior probability p(h|X) (in Equation
2). This approach is called maximum a posteriori Bayes, or MAP
Bayes for short. As Figure 9b shows, MAP Bayes captures the
qualitative trends in how adults and children generalize from
multiple examples, including the restriction of generalization after
three subordinate examples have been observed.5 However, it does
not capture the graded nature of generalization from a single
example. It also does not capture the increasing confidence in
basic-level generalization that comes from seeing three basic-level
examples; unlike both adults and children, MAP Bayes makes
exactly the same generalizations from three basic-level examples
as it does from just a single example.

Figure 10 shows the predictions of four alternative learning
models. None of these models have been specifically proposed for
word learning, but they are generic approaches from the literature
on computational models of learning and generalization, and they
are representative of previous suggestions for how word learning
might be viewed computationally. None are explicitly Bayesian,
but to varying degrees they correspond to the two special cases of
Bayesian learning shown above. Figure 10a presents the predic-
tions of a simple exemplar-similarity model, in which p(y � C|X)
is computed by averaging the similarity of y to each exemplar in X.
(We use the mean similarity judgments of the adult participants in
Experiment 1, normalized to a 0–1 scale.) For each set of exam-
ples, the generalization function is scaled linearly to have a max-
imum at 1.

Figure 10b shows the predictions of an alternative approach to
exemplar similarity, inspired by proposals of Goldstone (1994) and
Osherson, Smith, Wilkie, Lopez, and Shafir (1990), in which
p(y � C|X) is computed by taking the maximum similarity of y to
all exemplars in X. Like weak Bayes, the pure hypothesis-
averaging version of the Bayesian model shown in Figure 9a, both
exemplar-similarity models give a soft gradient of generalization

from one example but fail to sharpen generalization to the appro-
priate level given three examples.

More flexible similarity-based models of category learning that
incorporate selective attention to different stimulus attributes (e.g.,
Kruschke, 1992) might be better able to accommodate our data,
but not without major modification. These models typically rely on
error-driven learning algorithms, which are not designed to learn
how broadly they should generalize from just one or a few positive
examples without any negative examples, and low-dimensional
spatial representations of stimuli, which are not suited to repre-
senting a broad taxonomy of object kinds.

Several authors have suggested that associative or correlational
learning algorithms, perhaps instantiated in neural networks, can
explain how children learn the meanings of words (Colunga &
Smith, 2005; Gasser & Smith, 1998; Regier, 1996, 2003). It is not
possible here to evaluate all extant correlational learning algo-
rithms, but we do consider the standard approach of Hebbian
learning (Hertz, Krogh, & Palmer, 1991). Figure 10c shows the
predictions of a Hebbian learning network that is matched as
closely as possible in structure to our Bayesian models. The
Hebbian model uses input features corresponding to the same
hypotheses used in our Bayesian models, but instead of evaluating
and averaging those hypotheses with the machinery of Bayesian
inference, it uses the Hebb rule to compute associative weights
between each input feature unit and an output unit representing the
occurrence of the novel word to be learned (e.g., fep). This net-
work produces generalization patterns very much like those pro-
duced by the exemplar-similarity models (Figure 10a, 10b) or
weak Bayes (Figure 9a), capturing something of the graded char-
acter of one-shot generalization but failing to account for how
generalization sharpens to the appropriate level after three exam-
ples are seen.

The similar predictions of these various models reflect two
underlying computational commonalities. First, learning in the
Hebbian network is strictly based on the frequency with which
input features occur in the observed examples: Each exemplar
leaves a trace of its feature values in the weights connecting input
features to the output unit, and the final pattern of generalization is

5 Figure 9b shows the median pattern of generalization over the three
superordinate categories rather than the mean because the MAP generali-
zations are always either 0 or 1, and thus the mean is sometimes not
representative of the model’s all-or-none predictions.

Figure 9. Predictions of two variants of the Bayesian model. (a) Without the size principle, Bayesian
generalization behaves like an exemplar-similarity computation. (b) Without hypothesis averaging, Bayesian
generalization follows an all-or-none, rulelike pattern. MAP Bayes � maximum a posteriori Bayes approach;
sub. � subordinate; super. � superordinate.
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proportional to the average of the generalization (or “similarity”)
gradients produced by each exemplar individually. Second, all of
these models fail to converge to the appropriate level of specificity
given multiple examples, because they all lack the size principle
for reweighting multiple consistent hypotheses to prefer the hy-
pothesis most likely to have produced the observed examples.
When the Hebbian learning network is presented with multiple
examples in the same subordinate category (e.g., three Dalma-
tians), the correlation between the output unit and input features
specific to Dalmatians is no greater than the correlation between
output and input features that apply to all dogs, or all animals,
because every Dalmatian exemplar activates the dog and animal
units as well as the Dalmatian units. Because these correlations are
independent of the number of examples observed, the Hebbian
model cannot explain why generalization beyond the subordinate
concept decreases as more examples lying strictly within the
subordinate are observed (e.g., why seeing three Dalmatian exem-
plars leads to lower generalization to other dogs relative to seeing
just one Dalmatian exemplar). The same problem afflicts more
powerful associative learning mechanisms, such as standard neural
networks trained using back-propagation of errors (Rumelhart,
Hinton, & Williams, 1986) and the recent associative models of
word learning (Colunga & Smith, 2005; Regier, 2003, 2005),
which are also defined solely in terms of the statistics of input–
output co-occurrence.

The Hebb rule, or other associative learning algorithms, could
be modified to include some version of the size principle. For
instance, we could allow learning rates to vary for different input
features as a function of feature specificity. Such a move might
allow Bayesian and associative models of word learning to interact
productively. Our point here is not that connectionist models of
word learning are untenable but rather that generic associative
learning mechanisms based purely on correlations between observ-
able features are not sufficient to explain how children or adults
learn the meanings of new words. More powerful mechanisms of
statistical inference, such as our Bayesian framework, are neces-
sary.

Figure 10d shows the predictions of a standard learning algo-
rithm in the hypothesis elimination paradigm, known as the subset
principle (Berwick, 1986; Pinker, 1989; Siskind, 1996; see also
Wexler & Cullicover, 1980, for a discussion of subset-based
learning in syntax acquisition, and Bruner et al., 1956, and Feld-
man, 1997, for analogous proposals in category learning). The
subset principle ranks all hypotheses by inclusion specificity:
Hypothesis hi ranks higher than hypothesis hj if hj strictly includes
hi—that is, if hj includes every object in hi as well as at least one
other object. A subset learner eliminates all hypotheses inconsis-
tent with the observed examples and then generalizes in an all-or-
none fashion according to the highest ranking remaining hypoth-
esis—the most specific hypothesis consistent with the observed
examples. This approach is intuitively sensible and produces rea-
sonable generalizations from multiple examples, but it is far too
conservative given just a single example.

The patterns of generalization from multiple examples under the
subset principle are essentially identical to those of MAP Bayes.
Both approaches use just a single all-or-none hypothesis to guide
generalization, chosen on the basis of inclusion specificity or
posterior probability, respectively. These two criteria often con-
verge because one component of posterior probability is likeli-
hood, and under the size principle the likelihood is proportional to
specificity. The posterior probabilities of MAP Bayes also depend
on the priors, which exert their strongest role when only one
example has been observed. Here, the basic-level bias in the prior
accounts for why MAP Bayes generalizes differently than the
subset principle on one example—to all basic-level matches rather
than to just the subordinate matches. The more examples have
been observed, the stronger is the influence of the specificity
preference in the likelihood over the prior, and the more likely it
is that MAP Bayes and the subset principle will coincide. In the
limit of infinite data, MAP Bayes (as well as our full Bayesian
models) becomes equivalent to maximum likelihood, which under
the size principle is also equivalent to subset learning. Thus, the
subset principle can be justified as a rational statistical inference
when large numbers of examples have been observed, and it is

Figure 10. Predictions of four alternative, non-Bayesian models. Max � maximum; Sim � similarity; sub. �
subordinate; super. � superordinate.
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precisely this case of “learnability in the limit” that has been the
focus of most previous uses of the subset principle. Our Bayesian
models, based on the size principle, can be viewed as extensions of
the subset principle to explain the dynamics of learning from just
one or a few examples—arguably the most important regime of
learning for many real-world words and concepts. More broadly,
various phenomena of entrenchment and conservatism in language
acquisition (Braine & Brooks, 1995; Goldberg, 2003) may be more
consistent with our softer, statistical model than with the hard
commitments of the subset principle.

Summary

In sum, our inductive models may be seen as probabilistic
generalizations of the classic deductive approach to word learning
based on hypothesis elimination. As in hypothesis elimination
accounts, a constrained hypothesis space makes possible meaning-
ful generalization from examples. But in contrast to these ac-
counts, hypotheses are not just ruled in or out. With Bayes’ rule,
they are assigned a probability of being correct according to how
well they explain the pattern of examples observed. The assump-
tion that the observed examples are randomly sampled from the
word’s extension provides a powerful statistical lever, yielding
strong but reliable generalizations from just a few examples. Our
experiments in the domain of words for object categories showed
that people’s patterns of generalization are qualitatively and quan-
titatively consistent with the Bayesian model’s behavior but not
with standard models based on hypothesis elimination, exemplar
similarity, or associative or correlational learning. In particular, the
Bayesian approach naturally explains the spectrum of generaliza-
tion behavior observed given one or a few positive examples.
Graded generalization with one example follows straightforwardly
from the mechanism of hypothesis averaging, and the sharpening
from one to three examples follows straightforwardly from the size
principle. Bayesian inference may thus offer the most promising
framework in which to explain the speed and success of fast
mapping.

Could other models from the hypothesis elimination or associa-
tive traditions be extended to accommodate our findings? Not
easily, we think, and not without positing additional machinery
that either is inelegant or fundamentally departs from the original
spirit of these approaches. Using the deductive framework of
hypothesis elimination, in order to explain the sharpening of gen-
eralization from one to three examples, one would have to posit a
basic-level bias just for the one-example case and some version of
a subset bias (choosing the smallest category consistent with the
examples) just for the three-example case. Presumably we do not
want to have to posit a specific selection principle for each par-
ticular case. In addition, positing a basic-level bias makes subor-
dinate and superordinate kind labels difficult to learn. Because
children do eventually learn names at these levels, hypothesis
elimination approaches would have to posit further provisions,
such as overriding the basic-level bias with time or incorporating
some other linguistic cue to the appropriate level of generalization
for a label.

As mentioned earlier, it might be possible to extend an associa-
tive model of word learning to account for the range of generali-
zation behavior we observed, by building the size principle and
hypothesis averaging into its learning and activation rules. How-

ever, even those extensions might not be sufficient. Computations
in associative models are typically defined not over a core ontol-
ogy of objects and object-kind concepts but over relationships
between perceptual features—for example, the visual features of
objects and the sound features of words (Regier, 2005). This focus
on learning correlations at the level of perceptual features could
stand in the way of appropriate generalization. Our Bayesian
learner sees a critical difference between one object labeled three
times and three distinct but perceptually highly similar objects
each labeled once; so do 4-year-old children, as we showed in
Experiment 3. Although both cases provide three observations of
word–object pairings, and the object features are almost the same
in both cases, the latter case provides three independent samples of
objects in the concept, whereas the former case provides only one
independent sample. Thus, only the latter case provides strong
evidence about the extent of the concept, and only in the latter case
do children restrict their generalization to objects in the same
subordinate category. For an associative learner to appreciate this
difference, it would need to gain not only something like the size
principle in its learning rule but also some kind of ontology that
understands the differences between objects, percepts, and catego-
ries (e.g., Keil, 1979; Spelke, 1990). It would also need to build
some kind of taxonomic hierarchy of object-kind categories on top
of that ontology. Although these capacities are not currently part of
conventional associative models, they might not be incompatible
with a more general, predictive learning view of associationism
(L. B. Smith, 2000). Still, adding these capacities would seem to
abandon a core associationist claim that word learning can be
explained without sophisticated inferential mechanisms or sophis-
ticated representations of the world (e.g., Landau, Smith, & Jones,
1998).

Extending the Bayesian Framework

Our models here have focused on the inductive problem of word
learning in its simplest form: learning the meaning of a single new
word in a fairly restricted hypothesis space, given observations of
how that word is used to label one or more entities in the world.
We have tried to keep our models as simple as possible to capture
some fundamental insights about how the meanings of important
classes of words may be learned from very limited data. But word
learning in the real world is considerably more complex, in terms
of the kinds of hypothesis space the learners entertain, the kinds of
inferences required, and the kinds of data brought to bear on those
inferences. Word learning is also a dynamic process, in which
knowledge gained from previous word-learning experience—both
the specific meanings of particular words and abstractions about
the general principles of word meaning and usage—leads to cru-
cial constraints on future word learning (e.g., Baldwin, 1993;
Bloom, 2000; Gleitman, 1990; Markman, 1989; Regier, 2003;
Tomasello, 2001). This section briefly sketches some of the pos-
sible avenues for extending our models to handle these complex-
ities.

A Differently Structured Hypothesis Space: Objects and
Solid Substances

The fundamental problem of induction in word learning is how
to choose among the multiple potential concepts—hypotheses for
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word meanings—that are consistent with the observed examples of
a new word. So far we have addressed this problem in the context
of learning count nouns for object kinds, where multiple consistent
hypotheses come from hierarchically nested kind concepts. In
learning other sorts of words, one encounters different kinds of
inductive ambiguities when hypotheses overlap in other ways.
Here we sketch a Bayesian analysis of one such case, crosscutting
object kinds and solid substance kinds, showing how the same
general framework we developed for learning kind labels applies
even when the relevant concepts do not conform to a nested
hierarchy.

Consider the “furniture store” context raised in the introduc-
tion. The entities in a furniture store may be referred to in terms
of either their object category (e.g., chair, table, shelf, vase) or
the material they are made of (e.g., wood, plastic, metal, stone).
More generally, any solid entity may be construed in at least
two modes, as an object of a particular kind or as the solid
substance(s) that compose it, and words are available to refer to
either of these two modes. Learning words for solid entities thus
poses a challenge of learning with overlapping hypotheses—
but not nested hypotheses. Object-kind categories crosscut solid
substance categories, with each kind of object realizable in
many different substances and each substance capable of taking
on many different shapes (Figure 2).

Prasada, Ferenz, and Haskell (2002) explored the conditions
under which people would construe a solid entity in terms of an
object-kind or substance-kind concept when both crosscutting hy-
potheses were available. They showed people solid entities com-
posed of unfamiliar materials, with either regular shapes or com-
plex irregular shapes, and asked whether they would prefer to call
one of these entities “a blicket” or “some blicket.” Choosing “a
blicket” suggests that blicket refers to an object category, whereas
choosing “some blicket” suggests a substance kind. Prasada et al.
found that given a single regularly shaped entity, people tended to
choose an object category, but given a single irregularly shaped
entity, people tended to choose the substance interpretation. Peo-
ple’s inferences when given multiple examples were generally
consistent with these single-example cases, with one interesting
exception. When people were shown multiple essentially identical
entities, each with the same complex irregular shape and novel
material, their preference for labeling an entity in this set switched
from a substance interpretation to an object interpretation.

Our Bayesian framework can explain these inferences, if we
assume that people are treating the examples given as random
samples from one of two hypotheses for the meaning of the novel
word blicket, an object-kind category or a substance category. The
goal is to infer which hypothesis is more probable given the
examples observed. Technical details are beyond our scope here,
but there are several basic assumptions from which the results are
derived. First, each object category is organized around a proto-
typical shape. Second, object categories with regular shapes should
have higher priors than substance categories, which in turn should
have higher priors than object categories with irregular shapes.
This is consistent with English word frequencies, which are higher
for regularly shaped object category labels than for material or
irregularly shaped object category labels (e.g., Bloom, 2000;
Landau et al., 1988). Third, there are more conceptually distinct
shapes that support object categories than there are material prop-
erties that support substance categories. Thus, the effective size of

each object-kind hypothesis is smaller than that of each substance
hypothesis, and it is more of a suspicious coincidence to observe
three randomly sampled entities with the same novel shape as
compared with the same novel material. Speakers of English do
tend to find more salient and potentially nameable differences
among object shapes than among material substances, but there are
also cross-linguistic differences (Imai & Gentner, 1997).

Together, these ingredients allow us to explain the Prasada et al.
(2002) finding of a shift from a substance-based interpretation for
the novel word given one irregularly shaped example to an object-
based interpretation given three essentially identical examples with
the same irregular shape and material. The prior initially favors the
substance interpretation, but the shift in generalization with mul-
tiple examples comes from detecting a suspicious coincidence—a
reflection of the size principle in the likelihood term. It would be
a strong coincidence to observe three random samples all with the
same irregular shape if the novel word is intended to label a
substance kind, which suggests that an object-kind construal is
more likely to be correct.

Prasada et al. (2002) interpreted their findings in similar terms,
arguing that people will be more likely to interpret an entity as an
instance of an object kind if its form appears nonarbitrary. This
interpretation also explains a further finding of theirs, that a single
entity with an irregular shape can be construed as an instance of an
object kind if that shape is shown to have functional significance—
that is, in another sense, if its shape appears not to be a coinci-
dence. By framing these interpretations explicitly in terms of
statistical inference, as we do, we can see how they reflect more
general rational inferential mechanisms at work in understanding
and learning the meanings of words. The same mechanisms that
underlie people’s ability to infer the appropriate scope or range of
generalization, in learning names for hierarchically nested catego-
ries, also support the ability to infer the appropriate directions or
dimensions for generalization, where multiple plausible hypothe-
ses crosscut each other. Recent work has shown how to extend this
Bayesian approach to learning other aspects of linguistic meaning,
using differently structured hypothesis spaces appropriate for
learning verb frames (Niyogi, 2002), color terms (Dowman, 2002),
or principles of anaphora resolution (Regier & Gahl, 2004).

Transforming the Likelihood Function

In the basic Bayesian framework presented above, any informa-
tion about the meaning of a new word contributes through its
influence on either the likelihood or the prior. By changing or
expanding on one or both of these terms, we can address more
complex kinds of inferences or incorporate additional sources of
constraint on the learner’s inferences.

Other sources of input. Earlier we mentioned two sources of
information about word meaning that we did not explicitly incor-
porate into our formal analyses: negative examples—examples of
entities that a word does not apply to—and special linguistic cues
that relate the meaning of the new word to familiar words—as in
saying, “This is a Dalmatian. It’s a kind of dog.” Although we have
focused above on learning from positive examples without special
linguistic cues, either negative examples or relational linguistic
cues could sometimes be crucial in inferring the scope of a new
word’s extension. Our Bayesian framework can naturally accom-
modate these sources of information through straightforward mod-
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ifications to the likelihood function. We can assign zero likelihood
to any hypothesis that includes one or more negative examples,
essentially treating negative examples as a deductive constraint on
candidate word meanings. A cue such as “This is a Dalmatian. It’s
a kind of dog.” can also be treated as a deductive constraint, by
assigning zero likelihood to any hypothesis for Dalmatian that is
not contained within the extension of the word dog. A Bayesian
learner could then rationally infer a subordinate meaning for the
new word fep given just one positive example of a fep (e.g., a
Dalmatian) and either of these two additional sources of input: a
negative example (e.g., a Labrador that is not a fep) or a relational
cue in language (e.g., “Feps are a kind of dog”).

Theory-of-mind reasoning and sensitivity to sampling. A vital
source of information about word meaning comes from theory-of-
mind reasoning (e.g., Baldwin, 1991, 1993; Bloom, 2000; Toma-
sello, 2001). The fact that a certain kind of object can be labeled
with a certain word is not just a simple perceptual feature to be
associated with the corresponding object concept. Words are tools
used by intentional agents to refer to aspects of the world, and most
examples of words that a learner observes are the consequences of
intentional acts of reference. Inferences based on theory-of-mind
reasoning are often put in opposition to statistical inferences about
word meaning (Bloom, 2000; Regier, 2003), when the latter are
construed as bottom-up associative processes. But in the top-down,
knowledge-based approach to statistical inference that we propose
here, theory-of-mind considerations could play a critical role.
Making statistical inferences about the meanings of words from
examples may demand from the learner, in addition to other
abilities, a sensitivity to the intentional and epistemic states of the
speakers whose communicative interactions produce the examples
observed. This sensitivity may enter into our Bayesian framework
in specifying the sampling assumption that determines the appro-
priate likelihood function to use.

Although we have not yet explored our framework’s predictions
in settings with strong theory-of-mind demands, we have tested
whether children and adults are sensitive to the sampling process
generating the examples that they see labeled, and whether they
adjust their likelihoods accordingly. Xu and Tenenbaum (2007)
studied generalization for novel object-kind labels in two condi-
tions, one in which the labeled examples appeared to be sampled
randomly from the set of objects the word applies to and another
in which essentially the same examples were observed, but they
were clearly not randomly sampled from the word’s extension. The
stimuli were simple novel objects, generated by a computer draw-
ing program. As in the studies reported above, the objects could be
classified at multiple levels of a clear, salient hierarchy of classes.
The “teacher-driven” condition was similar to the three-
subordinate trials of the experiments above. The experimenter
pointed to an object and said to the child, “This is a fep!” Then she
pointed to two distinct (but very similar looking) objects from the
same subordinate category and labeled each one a fep. Here it is
reasonable (to a first approximation) to treat these examples as
random samples of feps. In the “learner-driven” condition, how-
ever, after the first labeled example was chosen by the experi-
menter, she said to the child, “Can you point to two other feps? If
you can get both of them right, you will get a sticker.” In this case,
children were motivated to choose two other objects from the same
subordinate category in order to get a sticker, both of which were
labeled as correct by the experimenter. The children in the learner-

driven condition received essentially the same data as the children
in the teacher-driven condition. However, in the learner-driven
condition, the three examples cannot be treated as a random
sample drawn from the word’s extension, as the child did not know
the meaning of the novel word (and was in fact trying to choose
objects that were similar to the one labeled by the experimenter).

Our results in Xu and Tenenbaum (2007) showed that both
adults and preschoolers were sensitive to the sampling conditions.
In the teacher-driven condition, we replicated our results from the
current experiments—the learners restricted their generalization of
the novel word to other subordinate exemplars. In the learner-
driven condition, however, both adults and children generalized
more broadly, to the basic-level category that included these ex-
amples. This is just what a Bayesian analysis would predict in a
situation where the examples to be labeled are sampled indepen-
dently of the meaning of the word (Xu & Tenenbaum, 2007). The
likelihood, instead of reflecting the size principle, now becomes
simply a measure of consistency: It is proportional to 1 for hy-
potheses consistent with the labeled examples and 0 for all incon-
sistent hypotheses. Without an increasing preference for smaller
hypotheses, a Bayesian learner will maintain the same basic-level
threshold of generalization as additional examples are observed
beyond the first, as long as they are all consistent with the same set
of hypotheses.

This sensitivity to sampling conditions is a distinctive feature of
our Bayesian approach. It is not predicted by either traditional
associative or deductive accounts of word learning, because they
do not view word learning as fundamentally a problem of making
statistical inferences from samples to underlying explanatory hy-
potheses. Associative approaches typically embody some implicit
statistical assumptions, but they do not make these assumptions
explicit and grant learners the power to make inferences about the
sampling process. They thus forgo not only an important aspect of
rational statistical inference but also an important contribution of
intentional reasoning to the word-learning process.

Transforming Prior Probabilities

The effects of previously learned words. There are several
ways in which word meanings learned previously can constrain the
meanings of new words to be learned. One way is through the
development of abstract syntax–semantics mappings, such as a
bias to map count nouns onto object kinds and mass nouns onto
substance kinds (Colunga & Smith, 2005; Kemp et al., 2007).
Another way is through lexical contrast, an assumption that the
meanings of all words must somehow differ (Clark, 1987). Both of
these influences can be captured in a Bayesian framework by
modifying the learner’s prior probabilities. Although the technical
details are beyond the scope of this article, here we sketch a
Bayesian analysis for lexical contrast.

Mutual exclusivity is one simple form of lexical contrast: a
constraint that each entity has only one label, and thus no two
words can have overlapping extensions (Markman, 1989). The
simplest way to capture mutual exclusivity in our framework is in
the prior. If mutual exclusivity is assumed to be a hard constraint,
we simply set the prior to zero for any hypothesis about the
extension for a new word that overlaps the extension of a previ-
ously learned word. If mutual exclusivity is taken to be only a soft
bias rather than a hard constraint, then the prior probability for
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hypotheses with extensions overlapping those of known words
could be set to some fraction of its default value. Regier (2003)
suggested an alternative way in which mutual exclusivity could
enter into a Bayesian analysis, via an alternative formulation of the
likelihood.

Mutual exclusivity could be useful in early stages of word
learning, but it excludes all cases of meaning overlap we have
studied here and makes it impossible to learn word meanings like
animal, Dalmatian, pet, and so on, just for the sake of learning the
one basic-level kind term dog. Clark’s principle of contrast (Clark,
1987) is a weaker version of lexical contrast that is more suited to
the mature lexicon: We assume that no two words have exactly the
same meaning, although their extensions may overlap in any way
other than complete identity. Formally, this principle could be
implemented just like mutual exclusivity, by setting the prior
probability of any hypothesis that corresponds to the extension of
a known word to zero, or to some small fraction of its default value
if a softer bias is called for.

Our analysis of lexical contrast effects has so far assumed a
highly idealized scenario, in attributing to the learner a completely
fixed lexicon of previously learned words. In practice, learners will
be learning many words at a time, with varying degrees of expe-
rience and confidence in meaning. A more realistic Bayesian
formulation of the word-learning problem would construe the
hypotheses and data as language-wide structures rather than learn-
ing individual word–concept mappings. The learner would eval-
uate hypotheses about possible sets of word–concept mappings for
the entire language, on the basis of the full body of data for all
words in the language seen to date. The size principle in the
likelihood would still apply separately for each word. The prior
over candidate lexicons might incorporate all of the factors dis-
cussed so far, including a principle of contrast and a bias to map
words onto a priori natural and distinctive concepts. Directly
implementing this language-wide approach would be computation-
ally intractable, but some kind of online approximation could
usefully describe the trajectory of large-scale vocabulary acquisi-
tion.

Open Issues

Although our theoretical framework aims for generality, many
important questions of word learning are beyond its current scope.
Here we sketch several of these open questions.

First, we have emphasized the phenomenon of fast mapping in
both adults and children, showing how our Bayesian models nat-
urally give rise to very efficient learning from just a few examples.
But many researchers have suggested that very early word learning
is a fundamentally different kind of process. It is often character-
ized as a slow and laborious enterprise (e.g., Dromi, 1987;
Golinkoff et al., 1994). Children between 12 and 18 months
require many exposures to a single word in order to learn it (but
see Woodward et al., 1994), and sometimes words appear to drop
out of their lexicon. It is unclear why very early word learning
appears so much less efficient than learning at later stages and how
that reflects on the applicability of our Bayesian framework to the
earliest stages of word learning.

There are at least four possible reasons why word learning in the
youngest children might not look like the fast-mapping behavior of
our Bayesian models. First, the necessary capacity for Bayesian

inference may not be available to the youngest children but rather
may develop, either through simple maturation or in a way that
depends on the development of other general-purpose cognitive
capacities. Associative models of word learning (e.g., Colunga &
Smith, 2005; Regier, 2005) often focus on the earliest stages of
word learning, and it is certainly possible that word learning is best
characterized as initially associative but Bayesian in the more
mature state that we have studied here. Second, the capacity for
Bayesian inference may be available, but very young children may
have much weaker, less constrained hypothesis spaces that do not
support learning with high confidence from just a few examples.
That is, they may be viewed as Bayesian word learners without the
appropriate hypothesis spaces. Third, very young children could
possess domain-general Bayesian inference capacities but not yet
be able to apply these mechanisms to the task of word learning. For
instance, they might not yet grasp the concepts of reference and
intention necessary to treat observations of word–object labeling
events as randomly sampled examples of a word’s reference class
and thus not be able to set up the likelihood functions appropriate
for word learning. Finally, the youngest children could possess all
of these core conceptual capacities but still suffer from processing
limitations that prevent them from remembering words stably over
time or fixing the referent of a word quickly. More research is
necessary to distinguish among these and other possible accounts
of the earliest stages of word learning.

We have so far treated word learning as a mapping problem:
Learners possess concepts—hypotheses for candidate word mean-
ings—independent of those words, and their task is to map word
forms onto these concepts. This view does not imply that the
concepts are innate, just that they are mostly in place by the time
the words are being learned. But it is quite possible that word
learning and concept formation proceed in parallel to some extent
(e.g., Bowerman & Levinson, 1996; Gentner & Goldin-Meadow,
2003; Xu, 2002, 2005). In terms of our Bayesian framework,
perhaps the observation of new words that cannot be mapped
easily onto the current hypothesis space of candidate concepts
somehow triggers the formation of new concepts, more suitable as
hypotheses for the meanings of these words. Bayesian models of
the relation between word learning and concept learning more
generally are one focus of our ongoing work (Perfors, Kemp, &
Tenenbaum, 2005).

More generally, questions about the origins of the learner’s
hypothesis space are clearly important targets for future work.
These questions can be asked on at least two levels. First, and most
deeply, how does the learner acquire the abstract knowledge that a
certain class of words should map onto a hierarchy of object kinds
and that certain kinds of perceptual features are typically diagnos-
tic of kind membership? Second, given this abstract knowledge,
how does the learner construct a concrete tree-structured hierarchy
onto which words for object kinds will be mapped? In principle,
both of these questions can be addressed within a hierarchical
Bayesian framework (Kemp, Perfors, & Tenenbaum, 2004, 2007;
Tenenbaum et al., 2006), an extension of the approach we have
developed here to include hypothesis spaces at multiple levels of
abstraction, with probabilistic models linking each level in the
hierarchy. The second question is easier to address and in some
sense is already addressed implicitly in the work presented above.
Given the goal of searching for a tree-structured hierarchy of
object kinds and a sense of which perceptual features are charac-
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teristic of how kinds cohere, the learner just needs to perform some
kind of hierarchical clustering on the objects it has observed in the
world. As Kemp et al. (2004) discussed, this hierarchical clustering
can be viewed as a Bayesian inference, a search for the simplest
tree that assigns a high likelihood to the observed object features,
under a probabilistic model in which objects that are nearby in the
tree are expected to look more similar than objects that are far
apart in the tree. The first question can be addressed by the same
logic. The learner considers different classes of structures that
could generate a hypothesis space of word meanings, including
tree-structured object-kind hierarchies as well as other kinds of
structure. Each of these abstract organizing principles can also be
scored according to how well it predicts the observed object
features, although in practice, computing this score could be quite
difficult, as it involves summing or searching over all specific
structures consistent with each class of structures (Kemp et al.,
2004; Perfors et al., 2005).

Our analysis of word learning focuses on what Marr (1982)
called the level of computational theory. We have tried to elucidate
the logic behind word learners’ inductive inferences, without spec-
ifying how that logic is implemented algorithmically in the mind
or physiologically in neural hardware. We make no claim that
Bayesian computations are implemented exactly in the mind or
brain, with explicitly represented probabilities. On the contrary, it
is more likely that the details of mental or neural processing
correspond to some efficient approximation to the Bayesian com-
putations we propose here. We also make no claim that any of
these computations has consciously accessible intermediate steps.
The fact that people are typically not aware of considering many
hypotheses for a word’s meaning does not mean that the mind does
not implicitly behave in accord with our Bayesian principles.

Last, the learning mechanism we have proposed here is unlikely
to be specific to word learning or language acquisition. Recent
research has shown that other domains of inductive learning and
reasoning may be explained in Bayesian terms, including causal
learning (Gopnik et al., 2004; Griffiths & Tenenbaum, 2005;
Sobel, Tenenbaum, & Gopnik, 2004; Steyvers, Tenenbaum,
Wagenmakers, & Blum, 2003), category-based induction (Heit,
1998; Kemp & Tenenbaum, 2003), conditional reasoning (Oaks-
ford & Chater, 1994), and covariation assessment (McKenzie,
1994; McKenzie & Mikkelsen, 2007). Whether word learning
requires specialized mechanisms or assumptions is the subject of
lively debate in the field of cognitive and language development
(e.g., Behrend, Scofield, & Kleinknecht, 2001; Bloom, 2000;
Diesendruck & Bloom, 2003; Diesendruck & Markson, 2001;
Waxman & Booth, 2002; Xu, Cote, & Baker, 2005). Although
word learning may require certain language-specific principles or
structures, it is plausible that the inference mechanisms, as we
suggest here, are domain general.

Conclusion

In this work, we have taken a close-up look at only a few pieces
of a big puzzle. We have argued that a Bayesian approach provides
a powerful computational framework for explaining how people
solve the inductive problem of learning word meanings, by show-
ing how the approach gives distinctive insights into several core
phenomena of word learning as well as strong quantitative fits to
behavioral data from our experiments with adult and child learners.

Of course, we should caution against concluding too much from
the studies presented here. The specific experimental tasks and
computational models we have worked with simplify the real
challenges that children face in so many ways, and they leave
many aspects of word learning completely unaddressed—even if
they suggest a number of promising extensions. Yet we still think
there are valuable lessons to be drawn here about the nature of
word learning and cognitive development more generally.

Accounts of cognitive development typically view statistical
learning and sophisticated representational machinery as compet-
ing—or even mutually exclusive—explanations for how we come
to know so much about the world. Here we have presented a
theoretical framework for explaining one aspect of development,
word learning, on the basis of the operation of powerful statistical
inference mechanisms defined over structured mental representa-
tions. In contrast to the associative tradition, our approach has
critical roles for conceptual hierarchies, individuated objects as
distinct from word–percept correlations, and abstract linguistic or
communicative principles. Unlike traditional rationalist ap-
proaches, ours is at heart about statistical inference, in which
knowledge about word meanings can be more or less graded
depending on the probabilistic evidence provided by different
degrees of data. A fully satisfying computational model of word
learning remains as remote as a model of general purpose cogni-
tion, but our work suggests at least one good bet about what such
models will have to look like. Only a combination of sophisticated
mental representations and sophisticated statistical inference ma-
chinery will be able to explain how adults and children can learn
so many words, so fast and so accurately.
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