Unit 2: Bayesian Learning

2. Learning by
Bayesian inference

10/6/2020



1. Bayesian inference provides a framework for
causal learning

2. The size principle embodies an assumption
about generating processes that leads to
stronger inference

3. Graphical models are a powerful and flexible
notation for describing Bayesian Models



An unknown computer program that generates from 1 to 100.
You get some random examples from this program.
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An unknown computer program that generates from 1 to 100.
You get some random examples from this program.
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Observations: X — {xl, ...,xz}

A set of hypotheses: h € H
+ evennumbers:  h = {2,4,6, ... 96,98, 100}
. multiples of 10:  h, = {10, 20, 30, ... 80, 90, 100}

+ powers of 2: hy = {2, 4, 8,16, 32, 64}
* between 50—60: Ay = {50, 51,52, ..., 58, 59, 6()}



Observations: X — {xl, ...,xz}

A set of hypotheses:

« Mathematical hypotheses: * Interval hypotheses:
* 0dd numbers, » Decades
* even numbers, {1 -10,10-20, ...}
* Square numbers, . Any range
* Cube numbers,
. primes, 1 <n < 100
» multiplesofn 3 <n < 12) n<m= 100

» powers of n (2 <n < 10) n—mj



Observations: X — {xl, ...,xz}

A set of hypotheses: h € H

%, N mathematical hypotheses
(I —2)
M %

A prior: P (h) =

M interval hypotheses

Likelihood: P X|h HP x|h



Likelihood:

1 xEh

P (x | h) = < A’
0 otherwise

60: slightly more likely powers of 10

10 30 60 80:
much more likely powers of 10




Bayesian Occam’s Razor

Just like our biased coin 0.3-
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Law of conservation of belief



Observations: X — {xl, ...,xz}

A set of hypotheses: h € H

%, N mathematical hypotheses

A prior: P(h) = {(

—2)
M b

M interval hypotheses

1
Likelihood: P (x|h) = {7’ xen

0 otherwise
P (X|h) P (h)

Posterior: P (h\X) = m
h'eH



P(X|h) P (h)

Observations: X = {x,,...,x,} Posterior:P (h|X) = m
hWeH

What about a new number? P (y c (| X)
Posterior prediction: P (y = ClX) = 2 P (y = Clh) P (h |X)
heH

Bayesian hypothesis averaging: To make optimal predictions,
average over all possible hypotheses, weighted by their posterior



Model predictions
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Model predictions
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Model predictions
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Humans Model
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Quine (1960)



Let’s try it out

dalmatian
dog

anhimal

dalmatian
dog

animal

Xu & Tenenbaum (2007)



What's going on here?

P(H|D) « P(D|H)P(H)
P(dog | %) P(¥|dog)P(dog)

P(dalmation \%F\)a P(%FM dalmation)P(dalmation)

What is P(dog)? What is P(dalmation)?

So maybe P(dog) > P(dalmation)



The size principle!




What's going on here?

P(H|D) <« P(D|H)P(H)

P(dog ¥ )= P(¥|dog)P(dog)

P(dalmation \%F‘\)a P(%FM dalmation)P(dalmation)

What is P(%FM dog)?



3 dalmatians from the dog category? A suspicious coincidence!

P(H|D) <« P(D|H)P(H)

2"‘“‘“{ | dalmation)P(dalmation)




The size principle!
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If I'm picking examples from
the dog category,

it's really unlikely to pick
three dalmations




Let’s try it out

dalmatian
dog

animal

dalmatian
dog

animal




Testing the suspicious coincidence

Here are three sibs. Can you give Mr. Frog all the other sibs?

7 \\

To give a sib, click on it below. When you have given all the sibs, click the Next button.




3- and 4-year-olds make this inference




Graphical models are a visual notation
for expressing the probabilistic
relationships among a set of variables.

Components:
1.Vertices that represent the variables

2.Edges that represent statistical
dependencies between the vertices

3.A set of probability distributions
that describe these dependencies



Vertices represent two kinds of variables:

variables whose values we see directly.

Components:
1.0bserved variables (filled circles) are @ @

2.Latent variables (empty circles) are

variables that we do not see, but that @
explain the process that generated the

observed variables.

Typically, we want to infer the values of the latent
variables from the observed variables in our data



This simple model describes how grass
might get wet

W denotes whether grass is wet or dry.

We is an observed variables because we
get to see it

R (rain) and § (sprinklers) are potential
causes of wet grass. They are latent
because we don't get to observe them

Because there is no arrow between R and
S, we know that they are independent



Suppose we know the
sprinklers turned on.

What is the probability
that the grass is wet?

P(W|S)=P(W|S&R)P(R)
+P (W|S& ~R)P(~R)

P(W|S)=.96-.4+.9-.6
= .92



Suppose we know the grass is o~

wet. @

What is the probability that
the sprinklers are turned on?

P(WIS)P(S) .92.2
P(W) )

~ .35

P(S|W) =

P(W)=P(W|S&R)P(S)P(R)
+P (W|S& ~R) P(S)P(~R)
+P (W| ~S&R)P(~S)P(R)

+P (W| ~S&~R)P(~S)P(~R)

=92.-2-449-2-64+9-8-44+.1-8-.6=.52



Suppose we know the grass P (R)
IS wet and that it rained.

What is the probability
that the sprinklers are

turned on?
P (S|W&R) _P(W&S&R)
P(W & R)
P(W|&S&R)P(S&R)

P (W & R)

P(W|&S&R)P(S)

P (W|R)
P(W|&S&R)P(S) -

P(W|S&R)P(S)+P(W|~S&R)P(~S)




We just discovered
something interesting!

P(S|W) = .35
P(S|W&R) = .21

The sprinklers and the rain are
independent of each-other.

But they are conditionally-dependent on
each other through the wetness of grass

Rain explains away sprinklers as a
cause of wet grass



Events A and B are independent iff
P(A&B)=P(A)P(B)

Events A and B are conditionally
independent given event C ift

P(A|B&C) =P (A|B)

In a graphical model, grand-children
of a vertex are independent of their
grandparents given their children

&—(r—



Conditional independence

P




Seminar on Thursday

Models at different levels

Read before class on Thursday, September 24, 2020

B Colunga, E., & Smith, L. B. (2005). From the lexicon to expectations about kinds: a role for
associative learning. Psychological Review, 112, 347—382.

e Read the introduction, Experiments 1-3, and the discussion and conclusion. Your goal should be
to understand what the phenemon being modeled is, how the model works, and what the basic
results are.

B Kemp, C., Perfors, A., & Tenenbaum, J. B. (2007). Learning overhypotheses with hierarchical
Bayesian models.. Developmental Science, 10, 307—321.

e You can skip the section on ontological kinds. Your goal should again be to understand what the
model is doing and why it produces the results it does.

The primary goal this week is to think about the relationship between these two models. How are
they the same? How are they different? Are there reasons to prefer one to the other? Are there some
things that one does better than the other?



1. Bayesian inference provides a framework for
causal learning

2. The size principle embodies an assumption
about generating processes that leads to
stronger inference

3. Graphical models are a powerful and flexible
notation for describing Bayesian Models



