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2. Learning by  
Bayesian inference



Learning by Bayesian inference

1. Bayesian inference provides a framework for  
   causal learning 

2. The size principle embodies an assumption  
   about generating processes that leads to  
   stronger inference 

3. Graphical models are a powerful and flexible  
   notation for describing Bayesian Models



The number game (Tenenbaum, 2000)

An unknown computer program that generates from 1 to 100.  
You get some random examples from this program. 

60

What other numbers will this program generate?
51? 58? 20?
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Human judgments in the number game

60 80 10 30

60 52 57 55

60 Diffuse similarity

Multiples of 10

Focused similarity 
(Near 50-60)



Human judgments in the number game

16 8 2 64

16 23 19 20

16 Diffuse similarity

Powers of 2

Focused similarity 
(Near 20)



Inference is fast, flexible, and can be “rule like” or similarity-based

60 52 57 55

16 8 2 64



A Bayesian model of the number game

Observations: X = {x1, …, x2}
A set of hypotheses: 

• even numbers: 

• multiples of 10: 

• powers of 2: 

• between 50—60: 

• … 

h ∈ H
h1 = {2, 4, 6, … 96, 98, 100}
h2 = {10, 20, 30, … 80, 90, 100}

h3 = {2, 4, 8, 16, 32, 64}
h4 = {50, 51, 52, …, 58, 59, 60}



A Bayesian model of the number game

Observations: X = {x1, …, x2}
A set of hypotheses: 

• Mathematical hypotheses: 
• odd numbers, 
• even numbers,  
• square numbers, 
• cube numbers,  
• primes,  
• multiples of n 
• powers of n  

(3 ≤ n ≤ 12)
(2 ≤ n ≤ 10)

 

• Interval hypotheses: 
• Decades  

• Any range 

{1 − 10, 10 − 20, …}

1 ≤ n ≤ 100
n ≤ m ≤ 100

{n − m}



A Bayesian model of the number game

Observations: X = {x1, …, x2}
A set of hypotheses: h ∈ H

A prior: P (h) =
λ
N , N mathema&cal		hypotheses

(1 − λ)
M , M interval		hypotheses

Likelihood: P (X |h) =
x

∏
x

P (x |h)



The size principle

Likelihood: 

P (x |h) = {
1

|h|
, x ∈ h

0 otherwise

2    4    6    8   10  
12  14  16  18  20  
22  24  26  28  30  
32  34  36  38  40   
42  44  46  48  50  
52  54  56  58  60  
62  64  66  68  70  
72  74  76  78  80  
82  84  86  88  90  
92  94  96  98 100 

h1 h2

2      4      6      8      10 
12  14    16    18     20 
22  24    26    28     30 
32  34    36    38     40 
42  14    46    48     50 
52  24    56    58     60 
62  34    66    68     70 
72  74    76    78     80 
82  84    86    88     90 
92  94    96    98   100

h1
h2

60: slightly more likely powers of 10

10 30 60 80:  
much more likely powers of 10



Bayesian Occam’s Razor

Just like our biased coin 
example!

P (H) = .5
P (H) = p

Simple vs. complex hypotheses:  
 

              : Fair Coin —   
       : Biased Coin —  
H1
H2

Law of conservation of belief



A Bayesian model of the number game

Observations: X = {x1, …, x2}
A set of hypotheses: h ∈ H

A prior: P (h) =
λ
N , N mathema&cal		hypotheses

(1 − λ)
M , M interval		hypotheses

Likelihood: P (x |h) = {
1

|h|
, x ∈ h

0 otherwise

Posterior: P (h |X) =
P (X |h) P (h)

∑h′ ∈H P (X |h′ ) P (h′ )



Making predictions about new numbers

Observations: X = {x1, …, x2}

What about a new number? P (y ∈ C |X)

Posterior: P (h |X) =
P (X |h) P (h)

∑h′ ∈H P (X |h′ ) P (h′ )

Posterior prediction: P (y ∈ C |X) = ∑
h∈H

P (y ∈ C |h) P (h |X)

Bayesian hypothesis averaging: To make optimal predictions, 
average over all possible hypotheses, weighted by their posterior



Model predictions

Powers of 4
Powers of 2

Square numbers

Even numbers

16



Model predictions

Powers of 2
Even numbers

16 
8 
2 
64



Model predictions

16 
23 
19 
20



Model fits

60 80 10 30

60 52 57 55

60

Humans Model



Model fits

16  8  2  64

16  23  19  20

16

Humans Model



The gavagai problem

Quine (1960)



Let’s try it out

Xu & Tenenbaum (2007)

dax

dalmatian

dog

animal

dax dax dax

dalmatian

dog

animal



What’s going on here?

P(dalmation|       )∝ P(       |dalmation)P(dalmation)

P(dog|      )∝ P(      |dog)P(dog)

What is P(dog)? What is P(dalmation)?

So maybe P(dog) > P(dalmation)



The size principle!

P(       |dog)

…

P(       |dalmation)
<



What is P(       |dog)?

What’s going on here?

P(dalmation|       )∝ P(       |dalmation)P(dalmation)

P(dog|      )∝ P(      |dog)P(dog)



3 dalmatians from the dog category? A suspicious coincidence!

P(        ,      ,       |dog)P(dog) 

P(dog|         ,      ,        ) ∝

P(         ,       ,       |dalmation)P(dalmation) 

P(dalmation|       ,      ,        ) ∝



The size principle!

…

P(.       ,      ,        |dog)

If I’m picking examples from 
the dog category,  
it’s really unlikely to pick 
three dalmations



Let’s try it out

dax

dalmatian

dog

animal

dax dax dax

dalmatian

dog

animal



Testing the suspicious coincidence



3- and 4-year-olds make this inference



Graphical models

Graphical models are a visual notation 
for expressing the probabilistic 
relationships among a set of variables. 

Components: 
1.Vertices that represent the variables 

2.Edges that represent statistical 
dependencies between the vertices 

3.A set of probability distributions 
that describe these dependencies

RR S

W



Latent and Observed Variables

Vertices represent two kinds of variables: 

Components: 
1.Observed variables (filled circles) are 
variables whose values we see directly. 

2.Latent variables (empty circles) are 
variables that we do not see, but that 
explain the process that generated the 
observed variables. 

RR S

W

Typically, we want to infer the values of the latent 
variables from the observed variables in our data



A graphical model for wet grass

This simple model describes how grass 
might get wet  

W denotes whether grass is wet or dry. 
We is an observed variables because we 
get to see it 

R (rain) and S (sprinklers) are potential 
causes of wet grass. They are latent 
because we don’t get to observe them 

Because there is no arrow between R and 
S, we know that they are independent

RR S

W

W

R S

R
S



Using the model to reason forward

RR S

W

P (S) = .2P (R) = .4

P (W |S & R) = .95

P (W |S & ∼ R) = .9

P (W | ∼ S & R) = .9

P (W | ∼ S & ∼ R) = .1

Suppose we know the 
sprinklers turned on. 
 

What is the probability 
that the grass is wet? 
P (W |S) = P (W |S & R) P (R)

+P (W |S & ∼ R) P ( ∼ R)

P (W |S) = .96 ⋅ .4 + .9 ⋅ .6
= .92



Suppose we know the grass is 
wet. 
 

What is the probability that 
the sprinklers are turned on? 

Using the model to reason backward

RR S

W

P (S) = .2P (R) = .4

P (W |S & R) = .95

P (W |S & ∼ R) = .9

P (W | ∼ S & R) = .9

P (W | ∼ S & ∼ R) = .1

P (S |W) =
P (W |S) P (S)

P (W)
=

.92 ⋅ .2
.52

≈ .35

P (W) = P (W |S & R) P (S) P (R)

+P (W |S & ∼ R) P (S) P ( ∼ R)

+P (W | ∼ S & R) P ( ∼ S) P (R)

+P (W | ∼ S & ∼ R) P ( ∼ S) P ( ∼ R)

= .92 ⋅ .2 ⋅ .4 + .9 ⋅ .2 ⋅ .6 + .9 ⋅ .8 ⋅ .4 + .1 ⋅ .8 ⋅ .6 = .52



Using the model to diagnose hidden causes

Suppose we know the grass 
is wet and that it rained. 
 

What is the probability 
that the sprinklers are 
turned on? 

RR S

W

P (S) = .2
P (R) = .4

P (W |S & R) = .95

P (W |S & ∼ R) = .9

P (W | ∼ S & R) = .9

P (W | ∼ S & ∼ R) = .1

P (S |W & R) =
P (W & S & R)

P (W & R)

=
P (W | & S & R) P (S & R)

P (W & R)

=
P (W | & S & R) P (S)

P (W |R)
=

P (W | & S & R) P (S)

P (W |S & R) P (S) + P (W | ∼ S & R) P ( ∼ S)
= .21



Explaining away

We just discovered 
something interesting! 

RR S

W

P (S) = .2P (R) = .4

P (S |W) = .35
P (S |W & R) = .21

The sprinklers and the rain are 
independent of each-other. 

But they are conditionally-dependent on 
each other through the wetness of grass 

Rain explains away sprinklers as a 
cause of wet grass



Conditional independence

Events A and B are independent iff A B
P (A & B) = P (A) P (B)

Events A and B are conditionally 
independent given event C iff

A B
C

P (A |B & C) = P (A |B)

In a graphical model, grand-children 
of a vertex are independent of their 
grandparents given their children

A

C

B



Conditional independence

P (W |S & R) = .95

P (W |S & ∼ R) = .9

P (W | ∼ S & R) = .9

P (W | ∼ S & ∼ R) = .1

P (R |C) = .4

P (R | ∼ C) = .1

P (S |C) = .1

P (S | ∼ C) = .5
RR S

W

C
P (C) = .5



Seminar on Thursday



Learning by Bayesian inference

1. Bayesian inference provides a framework for  
   causal learning 

2. The size principle embodies an assumption  
   about generating processes that leads to  
   stronger inference 

3. Graphical models are a powerful and flexible  
   notation for describing Bayesian Models


