Unit 2: Bayesian Learning

4. Inference by sampling
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1. Sampling algorithms like Markov chain Monte Carlo
(MCMC) can be used to approximate Bayesian
Inference

2. Markov chain Monte Carlo can be used to uncover
people’s mental representations

3. Sampling may be how the mind works at Marr’s
algorithmic level



Computational Theory
What is the goal of the computation? What is the logic of
the strategy by which it can be carried out?

Representation and algorithm

What is the representation for the input and output, and
what is the algorithm for the transtormation?

Hardware implementation
How can the representation and algorithm
be realized physically?

Marr (1982)



Each level approximates the level above it

Computational level

Approximation

Algorithm 1 Algorithm 2

Approximation

Implementation 1 Implementation 2
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Kemp, Performs, & Tenenbaum (2007)

Overhypothesis about how uniform bags are: p (a | y)

This can't be computed by exact inference



1. Exact inference: Compute the analytic closed formula.
Works for discrete hypotheses and simple,
non-hierarchical models

2. Grid search: Just try every possible value of the parameters
(or at least try lots of them).
Works for low dimensional problems with
diffuse posterior distributions

3. Markov chain monte carlo: Set up a sampling process that
asymptotically approximates the posterior.
Works (approximately) for any model given sufficient time



The parable of King Markov

™

King Markov

From Richard McElreath



The contract

Contract: King Markov must visit each
island in proportion to its population size

The Metropolis Archipelago



An algorithm to fulfill the contract

1.Flip a coin to choose the island on the left or right.
This is the “proposal” island



An algorithm to fulfill the contract

proposal

1.Flip a coin to choose the island on the left or right.
This is the “proposal” island



An algorithm to fulfill the contract

2.Find the population of the proposal island



An algorithm to fulfill the contract
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3.Find the population of the current island



An algorithm to fulfill the contract
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4.Move to the proposed island with probability =

P4



An algorithm to fulfill the contract
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5.Repeat forever



1.Flip a coin to choose the island on the left or right.
This is the “proposal” island

2.Find the population of the proposal island P,

3.Find the population of the current island P,

P
4.Move to the proposed island with probability it

Pe
5.Repeat forever
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The Metropolis algorithm converges
to correct proportions in the long run after 10000 weeks

We can use this same algorithm to
draw samples from distributions we
don’t know a closed form for

* slands - parameter values

1000 1500

number of weeks
500
|

0
|

 Population size - posterior probability 2 4 6 8

Island

Works for any number of dimensions.
Works for both discrete and continuous parameters



Equation of State Calculations by Fast Computing Machines

NicHorAs METROPOLIS, ARIANNA W. ROSENBLUTH, MARSHALL N. ROSENBLUTH, AND AucustA H. TELLER,
Los Alamos Scientific Laboratory, Los Alamos, New Mexico

AND

EpwARD TELLER,* Depariment of Physics, Universily of Chicago, Chicago, Illinois
(Received March 6, 1953)

A general method, suitable for fast computing machines, for investigating such properties as equations of
state for substances consisting of interacting individual molecules is described. The method consists of a
modified Monte Carlo integration over configuration space. Results for the two-dimensional rigid-sphere
system have been obtained on the Los Alamos MANTAC and are presented here. These results are compared
to the free volume equation of state and to a four-term virial coefficient expansion.




Markov chain Monte Carlo (MCMC) is a process for setting
up a chain whose long run (ergodic) distribution is the
probability distribution of interest

Markov: A process where only the last state matters

Monte Carlo: Random. Refers to the Monte Carlo Casino in
Monaco. Used as a code word between von Neumann and
Ulam who were working on the Manhattan project.



The Metropolis algorithm in Math

To get samples from a function J for which you can
compute a density but not a probability:



To get samples from a function f

Pick a random starting point X

For each time step ¢,
1.Proposed a point P, according to a distribution £ (ptlx_l)

People often use g (Pz\XH) ~ Normal (Xt—pﬁ)

But the only constraint is that it has to be symmetric

g (Pz‘x_1) — 8 (Xt—1 \P)



To get samples from a function f

Pick a random starting point X

For each time step ¢,

1.Proposed a point p; according to a distribution g (ptlx_l)

f(p:)
/ (xt—l)

2.Calculate an acceptance ratio a =



To get samples from a function f

Pick a random starting point X

For each time step ¢,

1.Proposed a point p; according to a distribution g (ptlx_l)

f(p:)
/ (xt—l)

3.With probability min(a,1) , add p; to the chain
Otherwise add X;_1 again

2.Calculate an acceptance ratio a =



The Metropolis algorithm in sketches

J ()




The Metropolis algorithm in sketches

J ()




The Metropolis algorithm in sketches

J ()




The Metropolis algorithm in sketches

J ()




Metropolis in action

http://chi-feng.github.io/mcmc-demo/



Using MCMC to understand people (Sanborn, Griffiths, & Shiffrin, 2010)

Categories are central to cognition
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Using MCMC to understand people (Sanborn, Griffiths, & Shiffrin, 2010)

Frog distribution
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The experimental task idea

Which animal is a frog?

S ARy




The experimental task idea

Which is the frog? Which is the frog? Which is the frog?
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The experimental task in practice

Examined distributions for four categories:

1.giraffes

neck angle

2.horses

head angle

3.CatS .................... Y tailangle

4. d OgS body tilt



Which animal is a giraffe?

Button 1 Button 2

1 trials remaining.




Samples for one experimental participant
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giraffe
horse
cat
dog




Mean animals for each of the 8 participants
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Uncovering animal representations

foot spread body height body tilt
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tail length tail angle neck length
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neck angle

giraffe
horse

cat
dog




Each level approximates the level above it

Computational level

Approximation

Algorithm 1 Algorithm 2

Approximation

Implementation 1 Implementation 2



Maybe each level approximates the level above it by sampling!

Computational level

Sampling

Algorithm

| Sampling

Implementation



The wisdom of crowds:

you can get better answers to numerical questions

(“What percent of the worlds airports are in the United States?)
by averaging over multiple people

Why?



Sampling in human cognition (Vul & Pashler, 2008)

The crowd within:
do you get better answers to numerical questions
by asking the same person multiple times?

Why?



700 l Guess 1
Guess 2
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Comparing the crowd to the crowd within

Mean Squared Error
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Sampling as a rational approximation (Vul, Goodman, Griffiths, & Tenenbaum, 2014)
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1. Sampling algorithms like Markov chain Monte Carlo
(MCMC) can be used to approximate Bayesian
Inference

2. Markov chain Monte Carlo can be used to uncover
people’s mental representations

3. Sampling may be how the mind works at Marr’s
algorithmic level



