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5. Comparing Models



Comparing models

1. Both qualitative and quantitative methods can be  
   used to distinguish between models 

2. Models should be chosen on the basis of  
   generalization, not fit 

3. Some common methods for assessing both fit and  
   generalization



What makes a model good?

A lot of you preferred the Kalman filter model to the  
Rescorla-Wagner model of classical conditioning.

Why?



Qualitative criteria

Assumptions check out 
The assumptions of the model are plausible and consistent with 
other findings. They are not ad-hoc.

Explanatory adequacy 
The model does more than just re-describe the data 
E.g. “The power law of practice” 

Interpretability 
The model makes sense. 
Components link to psychological or neural processes and constructs 



More qualitative criteria

Stability 
Results are due to core theoretical assumptions and not 
implementation details

Parsimony 
Simpler models are better models 
(Occam’s razor)



Quantitative criteria

Goodness of fit 
Sum of squared errors (SSE), Log likelihood, etc



The relationship between our model and the truth

y = f (x, θ) + E
̂y = g (x, θ′ )

Want to pick     ,       such that               ,    g θ′ 
g ≈ f θ′ ≈ θ



Sum of Square Errors

SSE = ∑ (y − ̂y)2



Root Mean Squared Error (RMSE)

RMSE =
∑ (y − ̂y)2

N



Percent Variance Accounted For (PVAF)

PVAF =
SSEnull − SSEmodel

SSEnull

SSEnull = ∑
i

(yi − μ)2

SSEmodel = ∑
i

(yi − ̂yi)2



Likelihood

P (D |Model)

Note: Standard Sum of Square Errors (SSE) is equivalent to 

y ∼ Normal( f (θ), σ)



Estimating parameters

1. Calculus 

2. Grid Search 

3. Optimization algorithms 

4. Sampling



Using calculus to find an analytic solution

1 0.74

2 0.59

3 0.48

4 0.36

di yi ̂yi

̂yi = β0 + β1 ⋅ di

For some models, like linear 
regression, you can use calculus 
to find parameters that 
minimize your fit metric



Deriving linear regression parameters

SSE = ∑
i

(yi − ̂yi)2

= ∑
i

[yi − (β0 + β1 ⋅ di)]
2



Deriving linear regression parameters

SSE = ∑
i

[yi − (β0 + β1 ⋅ di)]
2

∂SSE
∂β0

= − 2∑
i

(yi − β0 + β1 ⋅ di)

∂SSE
∂β1

= − 2∑
i

di (yi − β0 + β1 ⋅ di)



Grid search

β0

β1

Calculate           for every cell 
and choose the best

SSE

Works only for very small 
parameter spaces



Optimization algorithms: Gradient Descent



Optimization algorithms: Nelder-Mead Simplex

optim(initial_params, cost_function) 



How do we solve the problem of local minima?



How do you know if your optimization procedure is working?

Run the model with known parameters to generate a 
simulated data set 

Can you recover those parameters? 

Outcomes 
1. Yes. Great news!  
2. No. And the fit is better with the true parameters 

you need a different search algorithm 
3. No. But the fit is just as good as with the true parameters  

your parameters may be non-identifiable



Quantitative criteria

Goodness of fit 
Sum of squared errors (SSE), Log likelihood, etc

A good fit is important 
but not sufficient.

Why?



Too much flexibility leads to overfitting (Pitt & Myung, 2002)



Can we recover the true model?

Ma : y = (1 + t)−a

Mb : y = (b + ct)−a

Generate data from 

Ma + N (0,.1)
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Can we recover the true model?

Ma : y = (1 + t)−a

Mb : y = (b + ct)−a

a_opt <- optim(.3,  
               fn = loss_a) 

a = .39
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The complex model is preferred

Ma : y = (1 + t)−a

Mb : y = (b + ct)−a

a_opt <- optim(.3, fn = loss_a) 

a = .33, b = − .96, c = 2.02

b_opt <- optim(c(.3, .2, .1),
               fn = loss_b) 
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Too much flexibility leads to overfitting (Pitt & Myung, 2002)



Quantitative criteria

Goodness of fit 
Sum of squared errors (SSE), Log likelihood, etc 

A good fit qualifies the model as one of the candidate models for 
further consideration... necessary but not sufficient.  

Parsimony 
The simplest model that does not fit significantly worse than the 
most complex model 

Generalizability 
Can the model predict new data?



Fit and generalization can trade off (Pitt, Myung, & Zhang, 2002)



Complex models can predict a lot of different patterns of data

Simple model 
(Easy to falsify)

Complex model 
(Harder to falsify)



Comparing models

If more complex models can always fit the data better,  
how do we compare simple and complex models?

Intuition: Penalize complex models for their complexity

But how?



Measures of fit and generalizability



Solution 1: Penalize for number of parameters and sample size

AIC = − 2logL + 2K

Akaike’s Information Criterion

Bayesian Information Criterion

BIC = − 2logL + KlogN

K parameters

N data points



Akaikie’s information criterion (AIC)

AIC = − 2logL + 2K K parameters

Better fit More complexity

AICb − AICa
> 0 model a is better 
= 0 models are equivalent 
< 0 model b is better 



Bayesian information criterion (BIC)

BIC = − 2logL + KlogN

B =
p (M1 |y)
p (M2 |y)

= e− 1
2 ΔBIC

Related to “Bayes Factor”



The problem with AIC and BIC: Is complexity the same as parameters?

Ma : y = β0 + β1 ⋅ x1 + β2 ⋅ x2

Mb : y = β0 + β1 ⋅ x1 + β2 ⋅ x2
1



Solutions: Be a Bayesian and penalize the model for functional form as well

P (M |D) = ∫θ
P (D |θ) p (θ)



What else is missing?

Predictions from the 
number game model:

Model has one free parameter: 

60 52 57 55

λ

P (M |D) = ∫λ
P (D |λ) p (λ)



Be a frequentist! Use cross-validation 

1 0.74

2 0.59

3 0.48

4 0.36

di yi ̂yi

Training Set

Test Set

Estimate parameters on the Training set.  
Pick models based on the test set



Comparing models

1. Both qualitative and quantitative methods can be  
   used to distinguish between models 

2. Models should be chosen on the basis of  
   generalization, not fit 

3. Some common methods for assessing both fit and  
   generalization


