Unit 2: Bayesian Learning

5. Comparing Models

10/22/2020



1. Both qualitative and quantitative methods can be
used to distinguish between models

2. Models should be chosen on the basis of
generalization, not fit

3. Some common methods for assessing both fit and
generalization



What makes a model good?

A lot of you preferred the Kalman filter model to the
Rescorla-Wagner model of classical conditioning.

Why?



Assumptions check out
The assumptions of the model are plausible and consistent with
other findings. They are not ad-hoc.

Explanatory adequacy
The model does more than just re-describe the data
E.g. “The power law of practice”

Interpretability
The model makes sense.
Components link to psychological or neural processes and constructs



Stability

Results are due to core theoretical assumptions and not

implementation details

Parsimony

Simpler models are better models

(Occam’s razor)
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Quantitative criteria

Goodness of fit
Sum of squared errors (SSE), Log likelinood, etc

= «1.95-0.73 Log Days
R*2 = 0.993

(d) New York Times Retentlon




The relationship between our model and the truth

y=f(0)+E
y=gx,0)

Want to pick 2, @" such that @ %f 0~ 0



Sum of Square Errors




Root Mean Squared Error (RMSE)
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Likelihood

P (D|Model)

Note: Standard Sum of Square Errors (SSE) is equivalent to

y ~ Normal(f(0), o)



Estimating parameters

1. Calculus
2. Grid Search
3. Optimization algorithms

4. Sampling



Using calculus to find an analytic solution

For some models, like linear
regression, you can use calculus
to find parameters that
minimize your fit metric

y; =Pyt P d

di yi Yi
1 0.74
2 0.59
3 0.48

4 0.36




Deriving linear regression parameters







Calculate SSE for every cell
I and choose the best
IBO llllllllll Works only for very small
parameter spaces
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Optimization algorithms: Nelder-Mead Simplex

simplex at start of procedure
high point
g Ly

low point

(a) b reflection
Lh Ly ® bd

exXpansion

optim(initial params, cost function) t°) Q contraction

contraction in
all directions
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Run the model with known parameters to generate a
simulated data set

Can you recover those parameters?

Outcomes

1. Yes. Great news!

2. No. And the fit is better with the true parameters
you need a different search algorithm

3. No. But the fit is just as good as with the true parameters
your parameters may be non-identifiable



Quantitative criteria

Goodness of fit
Sum of squared errors (SSE), Log likelinood, etc

A good fit is important
but not sufficient.

Why?




Too much flexibility leads to overfitting (Pitt & Myung, 2002)

Goodness of fit

Good

A
|
" Overfitting
Y

Model fit

Generalizability

>

\ Model complexity
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Can we recover the true model?

Ma:y:(1+t)_a g =4

1.00 -

My:y=(b+ct) " .

Generate data from AR
M, + N(0,.1) |

’ 2 >0 75 100



Can we recover the true model?

M :y=0+1" “=

1.00 -

M, :y= (b + ct) -

a opt <- optim(.3, '
fn = loss a)

0.25 -

0.00 -

0 o5 50 75 100



The complex model is preferred

1.00 -

M, :y=0+1)"

0.75 7

M, :y= (b+ct)_a

a opt <- optim(.3, fn = loss a)  oz=-

b opt <- optim(

C
fn loss Db)

0.50 -

3, .2, .1), 0.00 -

0

d

25 50 75
t

33, b=—-.96,c=2.02

100




Table |. Results of a model recovery simulation in which a GOF measure
(RMSE) was used to discriminate models when the source of the error was
varied.

Condition (sources of Model the data were Model fitted
variation) generated from

M M M

A B B

a=0.6

(1) Sampling error 0.040 (0%) 0.029 (100%)

(2) Sampling error + 0.041 (0%) 0.029 (100%)
Individual differences

(3) Different models 0.075 (0%) 0.029 (100%)

(4) Sampling error 0.079 (0%) 0.029 (100%)




Goodness of fit
Sum of squared errors (SSE), Log likelihood, etc

A good fit qualifies the model as one of the candidate models for
further consideration... necessary but not sufficient.

Parsimony
The simplest model that does not fit significantly worse than the
most complex model

Generalizability
Can the model predict new data?



Fit and generalization can trade off (Pitt, Myung, & Zhang, 2002)

Y (Dependent Measure)

X (Independent Variable)



Data (Model) Space

Simple model Complex model
(Easy to falsity) Go (Harder to falsify)




Comparing models

If more complex models can always fit the data better,
how do we compare simple and complex models?

Intuition: Penalize complex models for their complexity

But how?



Measures of fit and generalizability

Minimum Description Length

Selection method Criterion equation Dimensions of complexity considered

Root Mean Squared Error RMSE = (SSE/N)"* None

Percent Variance Accounted For PVAF=100(1-SSE/SST) None

Akaike Information Criterion AIC = -2 In(f(y|6,)) + 2k Number of parameters

Bayesian Information Criterion BIC =-2 In(f(y|6,)) + k-In(n) Number of parameters, sample size

Bayesian Model Selection BMS=-In]| f( y|)n(6)do Number of parameters, sample size, functional form

MDL=—In (f( y|6,)) + (k'2)In(n/2x)+In | \/det(I(G))dO Number of parameters, sample size, functional form




Solution 1: Penalize for number of parameters and sample size

Akaike's Information Criterion
K parameters

AIC = — 2logl + 2K N data points

Bayesian Information Criterion

BIC = — 2loglL + KlogN



Akaikie’'s information criterion (AIC)

AIC = — 2logl + 2K K parameters
Better fit More complexity

>0 model a is better
AICb — AICa = 0 models are equivalent

< 0 model b is better



Bayesian information criterion (BIC)

BIC = — 2loglL + KlogN

Related to “Bayes Factor”



The problem with AIC and BIC: Is complexity the same as parameters?

M,:y=py+ P -x+ Py X%

My:y=Po+pxi+px;
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What else is missing?

Predictions from the
number game mOdel: 10 20 30 40 536%70 80 90 100 10 20 30 40 5(% 70 80 90 100

60 52 57 55

Model has one free parameter: A

P (M|D) =LP(D|/1)p(/1)



Be a frequentist! Use cross-validation

di Yi j\}i
1 0.74
2 0.59
3 0.48
4 0.36

Estimate parameters on the Training set.
Pick models based on the test set

Test Set

Training Set



1. Both qualitative and quantitative methods can be
used to distinguish between models

2. Models should be chosen on the basis of
generalization, not fit

3. Some common methods for assessing both fit and
generalization



