
dated our prediction and indicate the importance
of circadian regulation of FKF1 expression for
day length–dependent CO protein stabilization.

The FKF1 photoperiod sensor uses multiple,
partially redundant switches to allow strong ac-
tivation in long days. As the Sun rises higher in
the sky each day when spring approaches, plants
can sense the increased intensity in the blue-light
range of the spectrum each afternoon through
multiple photoreceptors, including FKF1. The
complexity of this mechanism even in a temper-
ate species such as Arabidopsis suggests that it
has the flexibility to regulate successful repro-
duction in a wide range of environments.

References and Notes
1. B. Thomas, D. Vince-Prue, Photoperiodism in Plants

(Academic Press, San Diego, CA, ed. 2, 1997).
2. Y. Kobayashi, D. Weigel, Genes Dev. 21, 2371 (2007).

3. A. de Montaigu, R. Tóth, G. Coupland, Trends Genet. 26,
296 (2010).

4. R. Amasino, Plant J. 61, 1001 (2010).
5. A. Samach et al., Science 288, 1613 (2000).
6. F. Valverde et al., Science 303, 1003 (2004).
7. T. Mockler et al., Proc. Natl. Acad. Sci. U.S.A. 100, 2140

(2003).
8. T. Imaizumi, H. G. Tran, T. E. Swartz, W. R. Briggs,

S. A. Kay, Nature 426, 302 (2003).
9. T. Imaizumi, T. F. Schultz, F. G. Harmon, L. A. Ho,

S. A. Kay, Science 309, 293 (2005).
10. M. Sawa, D. A. Nusinow, S. A. Kay, T. Imaizumi, Science

318, 261 (2007).
11. J. D. Salazar et al., Cell 139, 1170 (2009).
12. Y. Fukamatsu et al., Plant Cell Physiol. 46, 1340 (2005).
13. M. Sawa, S. A. Kay, Proc. Natl. Acad. Sci. U.S.A. 108,

11698 (2011).
14. F. Fornara et al., Dev. Cell 17, 75 (2009).
15. See supplementary materials on Science Online.
16. L. Q. Han, M. Mason, E. P. Risseeuw, W. L. Crosby,

D. E. Somers, Plant J. 40, 291 (2004).
17. Z. Zuo, H. Liu, B. Liu, X. Liu, C. Lin, Curr. Biol. 21, 841

(2011).

18. S. B. Tiwari et al., New Phytol. 187, 57 (2010).
19. U. Alon, Nat. Rev. Genet. 8, 450 (2007).

Acknowledgments: We thank S. Harmer, K. Torii, D. Nusinow,
S. Ito, and H. Kinmonth-Schultz for critical reading of the
manuscript and G. Coupland for providing cdf quadruple
mutant. Supported by the Next Generation Biogreen 21
program (SSAC grant PJ008109) (Y.H.S.), UK Biotechnology
and Biological Sciences Research Council (BBSRC) grants
BB/F59011/1 and BB/F005237/1 (R.W.S.), and NIH grant
GM079712 (T.I.). SynthSys is partly supported by BBSRC
grant BB/G019621 and by the UK Engineering and Physical
Sciences Research Council.

Supplementary Materials
www.sciencemag.org/cgi/content/full/336/6084/1045/DC1
Materials and Methods
Figs. S1 to S20
Table S1
References (20–40)

25 January 2012; accepted 13 April 2012
10.1126/science.1219644

Kinship Categories Across
Languages Reflect General
Communicative Principles
Charles Kemp1* and Terry Regier2

Languages vary in their systems of kinship categories, but the scope of possible variation
appears to be constrained. Previous accounts of kin classification have often emphasized
constraints that are specific to the domain of kinship and are not derived from general principles.
Here, we propose an account that is founded on two domain-general principles: Good systems
of categories are simple, and they enable informative communication. We show computationally
that kin classification systems in the world’s languages achieve a near-optimal trade-off between
these two competing principles. We also show that our account explains several specific
constraints on kin classification proposed previously. Because the principles of simplicity and
informativeness are also relevant to other semantic domains, the trade-off between them may
provide a domain-general foundation for variation in category systems across languages.

Concepts and categories vary across cul-
tures but may nevertheless be shaped by
universal constraints (1–4). Cross-cultural

studies have proposed universal constraints that
help to explain how colors (5, 6), plants, animals
(7, 8), and spatial relations (9, 10) are organized
into categories. Kinship has traditionally been a
prominent domain for studies of this kind, and
researchers have described many constraints that
help to predict which of the many logically pos-
sible kin classification systems are encountered
in practice (11–15). Typically these constraints are
not derived from general principles, although it is
often suggested that they are consistent with cog-
nitive and functional considerations (2, 11–13, 15).
Here, we show that major aspects of kin clas-
sification follow directly from two general princi-
ples: Categories tend to be simple, whichminimizes

cognitive load, and to be informative, which
maximizes communicative efficiency. Principles
like these have been discussed in other contexts
by previous researchers (16–19). For example,
Zipf suggested that word-frequency distributions
achieve a trade-off between simplicity and com-
municative precision (20, 21), Hawkins (22) has
suggested that grammars are shaped by a trade-
off between simplicity and communicative effi-
ciency, and Rosch has suggested that category
systems “provide maximum information with the
least cognitive effort” [p. 190 of (23)].

Figure 1A shows a simple communication
game that helps to illustrate how kin classification
systems are shaped by the principles of simplicity
and informativeness. The speaker has a specific
relative in mind and utters the category label for
that relative. Upon hearing this category label, the
hearermust guesswhich relative the speaker had in
mind. The speaker and hearer communicate through
a shared system of categories that specifies a
category label for each relative. This system is sim-
ple to the extent that it can be concisely mentally
represented and therefore easily learned and remem-

bered (11). The system is informative to the extent
that it supports successful communication. The prin-
ciples of simplicity and informativeness trade off
against each other (20, 21, 23). A system with a
single category that includes all possible relatives
would be simple but uninformative because this
category does not help to pick out specific rel-
atives. A system with a different name for each
relative would be complex but highly informative
because it picks out individual relatives perfectly.

Understanding how simplicity and informa-
tiveness trade off in a particular domain requires
assumptions about the structure of that domain.
Analyses based on generic assumptions can be
productive (Fig. 1B), but in-depth analyses of spe-
cific domains will need to formalize simplicity and
informativeness in ways that are sensitive to the
structural properties of those domains. For exam-
ple, analyses of kin classification (Fig. 1A) should
reflect the fact that kinship categories are defined
over relatives embedded within a genealogical sys-
tem, and analyses of color classification (Fig. 1C)
should reflect the fact that colors are embedded with-
in a continuous perceptual space. In order to explore
whether kin classification systems are shaped by
the trade-off between simplicity and informativeness,
we formulate versions of these general constraints
that are appropriate for the domain of kinship.

The kin classification systems we consider in-
clude terms that refer to the kin types in Fig. 2A,
namely, grandparents, parents, aunts, uncles, sib-
lings, children, nieces, nephews, and grandchil-
dren. This is the largest set of kin types forwhichwe
have kin namingdata and forwhich our analyses are
computationally tractable. Previous studies that chart
the space of logically possible classification sys-
tems have focused on grandparents (24), siblings
(11), or uncles and aunts (13) in isolation, and the
classification systems that we consider are large by
comparison. The systems in Fig. 2A, however, do
not include cousins, which have played a prom-
inent role in previous taxonomies of kin classifica-
tion systems (2). The supplementary materials (25)
describe how our approach extends to systems in-
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cluding cousins and other more distant relatives in
the family tree. Here, we show that our approach
accounts for the substantial cross-language variation
found in categorizing the kin types shown in Fig. 2.

The first tree in Fig. 2A includes 24 relatives of
a woman labeled as Alice (here, we assume one
relative per kin type; (25) reports analyses with dif-
ferent numbers of relatives per kin type), and the
second tree includes 32 relatives of a man labeled
as Bob. Only the second tree includes niblings
(nieces and nephews), because our data include
information about nibling categories for male
speakers only. Each possible kin classification sys-
tem that we consider partitions the 56 relatives in
the two trees into a set of nonoverlapping cate-
gories. That is, each possible system includes terms
that allow Alice and Bob to refer to each of their
relatives, and exactly one term is available for each
relative. The colors in Fig. 2A show a partition that
corresponds to the English kin classification sys-
tem. In the case of English, the partitions of the two
trees are identical, but some other languages in-
clude different terms for speakers of different sexes.
For example, Fig. 2B illustrates the kin classifica-
tion system of Northern Paiute, an indigenous lan-
guage of the western United States, in which men
andwomen use different terms to refer to their grand-
children (26). In Northern Paiute, unlike English,
the kin terms for grandparents and grandchildren
are self-reciprocal; for example, Alice and her ma-
ternal grandmother use the same term to refer to
each other.Wework with a cross-cultural data set
compiled by Murdock (27) that includes kin clas-
sification systems for 566 languages. In compil-
ing these data, Murdock aimed to cover the set of
kin classification systems that had been described
in the literature and took care not to include closely
related languages with similar classification sys-
tems. Some of the kin classification systems in
Murdock’s data are incomplete and do not specify
kin categories for all kin types in Fig. 2A, but the
data set specifies complete systems for 487 lan-
guages in total. These systems include 410 distinct
types, of which themost frequent occurs six times,
and these 410 types represent only a tiny fraction
of the 1055 systems that are possible in theory.

We hypothesized that the trade-off between
simplicity and informativeness can help to ex-
plain which of the many possible systems are
attested, or found to exist in actuality. Intuitively, a
kin classification system is complex if it includes
many terms that must be learned and remembered
and if each of those terms has a complex def-
inition. We formalize this idea by assuming that
kin classification systems are mentally encoded in
a representation language and that the complex-
ity of a system corresponds to the length of its
shortest description in this language. The repre-
sentation language is assumed to be universal,
but kin classification systems for different cul-
tures can be created by combining elements of
this language in different ways (28). Figure 2C
shows the shortest description of the English sys-
tem in a representation language that we now
describe. The representation language includes a

small set of primitives, all drawn from previous
accounts of kinship classification (29–31), includ-
ing features like FEMALE(·) and relations like
PARENT(·,·). The full set of primitives is shown
in Fig. 3A. Rules for combining these primitives
are again based on previous formal accounts
(30, 32–34) and are shown in Fig. 3B. The first
six rules indicate that a new relation C(·,·) can be
defined as a conjunction or disjunction involving
two relations or a relation and a feature. For ex-
ample, Fig. 2C uses the first rule in Fig. 3B to de-
fine mother(·, ·) as the conjunction of PARENT(·,·)
and FEMALE(·). The seventh rule indicates that
a new relation C(·,·) can be defined as the rela-
tive product of two existing relations. For ex-
ample, Fig. 2C defines grandmother(·,·) as the
relative product of mother(·,·) and PARENT(·,·).
The final three rules indicate that a new relation
can be the inverse, symmetric closure [A↔(·,·)]
or transitive closure [A+(·,·)] of an existing re-
lation. Figure 2D uses the inverse rule to define
the child of a man’s sister [mansisterchild(·,·)] as
the inverse of maternaluncle(·,·). The symmetric
closure rule is used in Fig. 2D to define the four
self-reciprocal terms that refer to grandparents and
grandchildren. The transitive closure rule can cap-
ture systems where the same term is used to
refer to a parent and a grandparent or to a child
and a grandchild. Given the conceptual resources
in Fig. 3, the complexity of a system is the smallest
number of rules needed to define all terms in the
system. For example, the complexity of the English
system (Fig. 2C) is 15, and the complexity of the

Northern Paiute system (Fig. 2D) is 24. The com-
plexity of a system can exceed the number of terms
in the system: TheNorthern Paiute system includes
18 terms, but Fig. 2D requires 24 rules in order to
define these 18 terms. Our algorithm for comput-
ing the complexity of a system is described in (25).

Consider now the dimension of informative-
ness (35, 36). Suppose that the 24 individuals in
Alice’s family tree are numbered from left to right
and top to bottom, and let z be a vector that rep-
resents a partition of the 24 individuals into cate-
gories, where zi represents the kinship category
used to label individual i. For example, if Alice is
an English speaker, then z1 will equal z3 because
individuals 1 and 3 are both grandmothers. Sup-
pose now that Alice wants to refer to individual
1 (her maternal grandmother) and uses the phrase
“my grandmother.” Because Alice has two grand-
mothers, some additional information must be
specified to pick out the individual she has inmind.
Information theory holds that the additional cost
ci in bits when referring to individual i is

ci ¼ −log2
pi
∑

zj¼zi
pj

0

B@

1

CA ð1Þ

where pi is the probability that Alice will need
to refer to individual i. For example, if Alice is
equally likely to refer to hermaternal and paternal
grandmothers, then one extra bit must be com-
municated in addition to the phrase “my grand-
mother” to indicate which grandmother she has

C

my brother

B

A

Younger
brother
Younger

sister
Elder

brother
ElderEgoYounger brother

. . .o1 o2 o3

Mother Father

sister

o5

Younger brother?
Elder brother?

o2

o1
o3

o4

o6

Fig. 1. Communication games can be used to study the trade-off between simplicity and informativeness.
(A) A communication game for the kinship domain. The objects in the domain are six relatives of the
speaker, who is labeled as “Ego” in the family tree. The speaker and hearer have both learned category
labels for all of the relatives, and the colors shown here represent English category labels. For example, a
single term, “brother,” is used for both younger and elder brother. The speaker uses a category label to
refer to one of her relatives, and the hearer must infer which relative she has in mind. (B) A similar
communication game can be formulated within a generic domain that has no structure except for the fact
that objects are grouped into categories (21). The colors again represent category labels. (C) A similar
communication game can be formulated within the domain of color, where the “objects” are now points in
a continuous perceptual space, shown here for simplicity as a one-dimensional spectrum. The colored bars
below the spectrum indicate ranges of color that belong to the same English color categories.
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in mind. The communicative cost C for Alice is
defined as the expected cost when Alice needs to
refer to one of the individuals in her family tree:

C ¼ ∑
24

i¼1
pici ð2Þ

The communicative cost for Bob is defined
similarly, and we define the communicative cost
of an entire kin classification system as the av-
erage of the costs for Alice and Bob.

The need probabilities pi play an important
role in Eqs. 1 and 2 and can in principle capture
the fact that different cultures impose different
communicative requirements (2, 37). Becausewe
lack data that would allow us to estimate need

probabilities on a per-language basis, we provi-
sionally assume a universal distribution of need
probabilities. We estimated these probabilities by
computing the relative frequencies of kin expres-
sions of the form “mygrandmother,” “mymother,”
“my daughter,” “my granddaughter,” and the like
across corpora for two languages: the Corpus of
Contemporary American English (38) and the Ger-
man Reference Corpus (39). Relative frequencies
were similar for English and German, and Fig.
3C is based on combined results across these two
languages. Although the need probabilities in Fig.
3C are based on English and German, some of the
same qualitative patterns may apply to many cul-
tures. For example, because every member of a

society has parents but some members do not
have children, it follows that references to parents
should tend to be more common across the whole
society (40). We will use the probabilities in Fig.
3C for all analyses to follow, but future studies can
explore whether our results can be improved by
using different sets of need probabilities for
different cultures.

Given our definitions of complexity and com-
municative cost, we will say that one kin clas-
sification system dominates another if it is superior
along one dimension and no worse along the oth-
er. For example, Northern Paiute does not domi-
nate English (English is simpler), and English
does not dominate Northern Paiute (Northern

A B

C D

English Northern Paiute

Fig. 2. Kin classification systems and their shortest descriptions in the representation
language that we use. (A) The English kin classification system. Individuals with the
same color [e.g., Alice’s mother’s mother (MM) and father’s mother (FM)] are assigned
to the same category (in this case, “grandmother”). (B) The Northern Paiute system.
Note that Alice and Bob use different kinship terms for their grandchildren. (C and D)
The shortest descriptions of the English and Northern Paiute systems in the rep-
resentation language that we use.
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Paiute enablesmore informative communication).
A system is “near-optimal” (6, 10) if it is dom-
inated by few alternatives, and we can now ex-
plore whether attested systems are near-optimal
with respect to the space of possible systems.

We tested the near-optimality hypothesis by
using a series of analyses that range in scope
from broad to focused. Because the complete
space of possible systems is too large to enu-
merate, we began by exploring a large subset of
this space that is likely to include all of the near-
optimal candidates. We began by enumerating
around 71,000 distinct kinship categories that
can be defined by starting with the primitives in
Fig. 3A and applying the rules in Fig. 3B up to
three times. Each of these categories corresponds
to a subset of the 56 individuals in Fig. 2A. The

number of kin classification systems that can be
built from these categories is extremely large, and
we therefore sampled a representative subset of
these systems. Figure 4A plots these systems along
our two dimensions. The best systems according
to our account are located along the optimal fron-
tier, also known as the Pareto frontier, which cor-
responds to the bottom left boundary of the space.
The majority of attested systems (black circles)
are found near the optimal frontier. Whereas Fig.
4A explores a sample from the space of all pos-
sible kin classification systems, Fig. 4B shows
the results of a more focused analysis that in-
cludes all and only the 8.3 × 108 systems that can
be created by combining categories that appear in
more than two attested systems. Again the attested
systems tend to fall near the optimal frontier, in-

dicating that they tend to dominate other systems
built from the same collection of categories.

Figure 4, A and B, is based on partitions of
the full family tree in Fig. 2, but Fig. 4C shows
results for analyses that focus separately on grand-
parents, grandchildren, siblings, mother and aunts,
father and uncles, and children and niblings (nieces
and nephews). Attested systems are again shown
in black, and the size of each black circle indicates
its frequency. The results are consistent with the
near-optimal pattern observed for the entire family
tree. The results also support a related prediction of
our account: that frequent systems should tend to
lie closer to the optimal frontier than rare systems.

Our analyses so far have tested the near-
optimality claim relative to large spaces of pos-
sible competitors. We now test this claim relative

A B       C

Fig. 3. Components used to formalize the notions of cognitive complexity and
communicative cost. (A) Primitive concepts. (B) Rules for combining these concepts.
Each rule allows a new concept C() to be defined in terms of atmost two concepts A()

and B(), which must be either primitive or previously defined. (C) Need probabilities
for individuals in the family trees of Fig. 2. The actual probabilities are derived from
English andGerman corpus statistics andareproportional to thenumbers shownhere.
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Fig. 4. The optimal frontier. (A) Communicative cost versus complexity
for a large space of possible kin classification systems. Attested systems
are shown as black circles. (B) Communicative cost versus complexity for
systems built from attested categories that appear more than twice in the

Murdock data. (C) Optimality analyses for six subsets of the full family
tree in Fig. 2. In each plot, the black circles represent real-world systems,
and the sizes of these circles represent frequencies within the Murdock
data set.
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to smaller sets of competitors that might be ex-
pected to perform especially well: simple trans-
formations of attested systems (6). If attested
systems are near-optimal, then each attested sys-
tem should tend to dominate transformations of
that system. The transformations that we consider
are based on permutations defined over five chunks
of the family tree, each comprising four individuals:
grandparents, grandchildren, siblings, maternal
siblings, and paternal siblings. These chunks are
shown in Fig. 5A. For example, if we permute
the system in Fig. 2B by exchanging the category
labels of the grandparents chunkwith those of the
grandchildren chunk, then Alice will use one
term for her maternal grandparents, a second term
for her paternal grandparents, and four distinct
terms for her grandchildren. We considered all
such permutations that respected category boun-
daries: that is, permutations that moved entire
categories and did not move only parts of catego-
ries. Figure 5B summarizes the results when the
full set of permutations is applied to the attested

systems in the Murdock data set. In most cases,
attested systems dominate permutations of these
systems, suggesting that attested systems tend to
be near-optimal with respect to a focused set of
related systems, not just the full space.

Previous researchers have described con-
straints that help to predict which kin classi-
fication systems are encountered in practice
(2, 11, 15, 35–37, 41–50), and we now show that
some of these constraints emerge as consequences
of our account. Greenberg (13, 24) focused on
markedness constraints, including the constraint
that near relatives (e.g., siblings) are more likely
than distant relatives (e.g., parent’s siblings) to be
split intomultiple categories and the constraint that
ascending generations (e.g., grandparents) are more
likely to be split than descending generations (e.g.,
grandchildren) (13). AsGreenberg (24) and others
(51, 52) have argued, markedness constraints can
often be usefully formulated in terms of proba-
bilities, and some of Greenberg’s specific con-
straints can be explained as a consequence of the

nonuniform distribution of need probabilities over
the tree in Fig. 3C. In particular, need probabilities
are higher for near relatives than distant relatives
and higher for ascending generations than descend-
ing generations. To demonstrate that our theory
is sensitive to Greenberg’s constraints, we show
results for three specific permutations (Fig. 5C).
The first and second permutations exchange near
relatives (siblings) with distant relatives (mater-
nal or paternal siblings), and the third exchanges
an ascending generation (grandparents) with a
descending generation (grandchildren). In all three
cases, attested systems tend to score better than per-
muted systems, illustrating that violations of Green-
berg’s constraints are penalized by our account.

Another commonly invoked constraint is that
kinship categories tend to have conjunctive defini-
tions (e.g., parent AND female) rather than disjunc-
tive definitions (e.g., parent OR female) (11–13).
Because conjunctive definitions lead to smaller
categories and disjunctive definitions lead to broad-
er categories, our communicative cost measure
predicts that conjunctive definitions will tend to
be preferred. To test this prediction, we developed
a ranking measure that reflects the optimality of
individual categories (25). By this measure, small-
er ranks are better: Categories that belong to sys-
tems on the optimal frontier have ranks of zero,
and categories that belong only to systems that lie
far from the optimal frontier have large ranks. We
computed the rank of every category that belongs
to one of the hypothetical systems shown as light
gray circles in the subtree analyses of Fig. 4C.
Figure 5D shows that for each subtree, conjunctive
categories have smaller (i.e., better) ranks on av-
erage than disjunctive categories. Although our
theory tends to penalize disjunctive systems, fig.
S9 (25) shows that the near-optimality results in
Fig. 4 are driven by more than just this fact.

We have argued that kin classification systems
in the world’s languages exhibit a near-optimal
trade-off between simplicity and informativeness.
We have also argued that the trade-off between
these general principles accounts for some spe-
cific constraints on kin classification systems. Even
so, kin classification is clearly shaped by factors
that go beyond the account presented here. For
example, kin classification systems tend to cor-
relate with, and are presumably shaped by, local
social patterns of marriage and residence (2). Our
account places substantial constraints on kin clas-
sification systems, explaining several previously
documented constraints, and we propose that so-
cial forces supply further constraints, such that
kin classification systems are both near-optimal
with respect to general communicative constraints
and well-suited for local social purposes.

Although our theory predicts that kin classi-
fication systems achieve a near-optimal trade-off
between simplicity and informativeness, it does
not capture the process of cultural evolution
(41, 53, 54) that presumably led to this result. Pre-
vious researchers have developedmodels of cultural
evolution thatmay help to explain hownear-optimal
kin classification systems emerge as a consequence
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Fig. 5. Fine-grained optimality analyses. (A) The gray bars indicate the five chunks used for the
permutation analysis. (B) Results of the permutation analysis. Attested systems typically score better than
permuted versions of these systems and rarely score worse. In some cases, the attested and permuted
systems are equal in both cost and complexity; in others, the attested system is superior along one
dimension but inferior along the other, and the comparison is indeterminate. (C) Results for three specific
permutations that exchange near relatives (siblings) with more distant relatives (maternal and paternal
siblings) and that exchange ascending relatives (grandparents) with descending relatives (grandchildren).
Attested systems dominate those that permute near and distant relatives, or ascending and descending
relatives, which explains specific markedness constraints proposed previously. (D) Comparison between
conjunctive and disjunctive categories. Conjunctive categories contribute to systems of greater optimality,
which may help to explain the cross-cultural predominance of conjunctive categories.
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of selective pressure for simplicity and informative-
ness (55–57). Studying the evolution of kin classi-
fication systemsmay reveal additional constraints
on attested systems; for example, there may be
systems that are near-optimal according to our
analysis but unattested because they are not the
outcomes of plausible evolutionary sequences (41).

We have relied here on kinship-specific realiza-
tions of the principles of simplicity and informative-
ness. Appropriate realizations of the same general
principlesmay apply to semantic domains other than
kinship, and some evidence suggests that they do.
It has been proposed that color naming systems in
the world’s languages reflect partitions of percep-
tual color space that are near-optimally informa-
tive (58), and recent analyses support this view (6),
including an analysis of lightness terms (59) that
relies on a variant of the communication game in
Fig. 1. A similar analysis of color terms should be
possible within our framework, where communica-
tion is considered successful to the extent that the
color inferred by the hearer is close in perceptual
space to that intended by the speaker. The domains
of kinship and color are different in fundamental
respects: Kin terms describe relations between dis-
crete individuals, whereas color terms pick out re-
gions of a continuous perceptual space. The fact
that the same general principles help to explain
semantic category systems in such dissimilar do-
mains opens up the possibility of a domain-general
foundation for categorization across cultures.
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Neural Correlates of a Magnetic Sense
Le-Qing Wu and J. David Dickman*

Many animals rely on Earth’s magnetic field for spatial orientation and navigation. However, how the brain
receives and interprets magnetic field information is unknown. Support for the existence of magnetic
receptors in the vertebrate retina, beak, nose, and inner ear has been proposed, and immediate gene
expression markers have identified several brain regions activated by magnetic stimulation, but the central
neural mechanisms underlyingmagnetoreception remain unknown. Here we describe neuronal responses in
the pigeon’s brainstem that show how single cells encode magnetic field direction, intensity, and polarity;
qualities that are necessary to derive an internal model representing directional heading and geosurface
location. Our findings demonstrate that there is a neural substrate for a vertebrate magnetic sense.

Behavioral studies have shown that many
animals derive geopositional information
using cues from Earth’s magnetic field

(1–5). Geomagnetic inclination varies from 0° at
the magnetic equator to T90° at the magnetic

poles (Fig. 1), and these direction angle variations
could be used to derive latitude information (6).
Geomagnetic intensity also varies uniformly from
the equator to the poles (Fig. 1), and local inten-
sity variations exist that seem to be used by some

animals for positional determination (7). To be
functional, a neural system subserving magneto-
reception must be sensitive to both of these mag-
netic field qualities. Although several regions of
the central nervous system are activated by mag-
netic stimulation (8–12), until now there has been
no clear evidence for magnetic sense neural cor-
relates in the vertebrate brain.

A number of studies have suggested that ret-
inal (13, 14), beak (15, 16), and possibly inner ear
receptors (17, 18) all transduce magnetic field
information in birds. Thus, we recently delivered
a rotatingmagnetic field to alert pigeons and used
an early-release gene marker for neural activation
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