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Producing high-dimensional semantic spaces
from lexical co-occurrence

KEVIN LUND and CURT BURGESS
University ofCalifornia, Riverside, California

A procedure that processes a corpus of text and produces numeric vectors containing information
about its meanings for each word is presented. This procedure is applied to a large corpus of natural
language text taken from Usenet, and the resulting vectors are examined to determine what informa­
tion is contained within them. These vectors provide the coordinates in a high-dimensional space in
which word relationships can be analyzed. Analyses of both vector similarity and multidimensional
scaling demonstrate that there is significant semantic information carried in the vectors. A compari­
son of vector similarity with human reaction times in a single-word priming experiment is presented.
These vectors provide the basis for a representational model of semantic memory, hyperspace ana­
logue to language (HAL).

Although there is a lack of agreement on exactly what
semantic memory in humans is, some aspects of it are
fairly noncontroversial. It is generally understood to be a
memory of the meanings of things more than oftheir as­
sociations (the associations being maintained, perhaps,
by more episodic memories). Human semantic memories
are presumably constructed through experience with the
world; as concepts are encountered, information about
their meanings is accumulated. This paper will present
and examine a method for creating a simulation that ex­
hibits some of the characteristics of a human semantic
memory, a simulation that develops through the analysis
of human experience with the world in the form of nat­
ural language text.

Lexical co-occurrence has been established as a useful
basis for the construction ofsemantic spaces (Burgess &
Cottrell, 1995; Burgess & Lund, 1995b; Burgess & Lund,
in press; Lund & Burgess, in press; Lund, Burgess, & Atch­
ley, 1995). A semantic space is a space, often with a large
number of dimensions, in which words or concepts are
represented by points; the position ofeach such point along
each axis is somehow related to the meaning of the word
(Osgood, Suci, & Tannenbaum, 1957). Semantic spaces
can be useful for examining the relationships between the
words or concepts within them because, once the space is
built, relationships can be quantified by applying distance
metrics to the points within the space.

Semantic spaces are traditionally constructed by first
defining the meanings ofa set ofaxes and then gathering
information from human subjects to determine where each
word in question should fall on each axis. For example,
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a mouse might be placed near one end of a "size" axis,
whereas a mountain would be closer to the opposite end
(Osgood et al., 1957). There are both theoretical and prac­
tical problems with this approach. The theoretical prob­
lem is that the experimenter must choose a set of axes
and hope both that they are sufficient to represent the de­
sired level ofdetail in the space being built and that human
judges will be able to accurately determine where stim­
uli should be placed along them. A more practical issue
is that this is a tedious procedure: the number of subject
judgments required is proportional to the number ofaxes
desired multiplied by the number of items to be placed in
the space. There are other approaches for determining se­
mantic characteristics of words that involve judgments
or ratings about the nature of interword relationships, but
these still entail large numbers of human judgments to
produce the semantics ofrelatively few items (Burgess &
Lund, 1994; McRae, de Sa, & Seidenberg, 1993).

The use oflexical co-occurrence to construct semantic
spaces addresses both of these problems. No explicit
human judgments are required, and the choice ofaxes is,
if not principled, at least no longer arbitrary. This paper
presents a procedure by which high-dimensional seman­
tic. spaces may be constructed, in an automated fashion,
from bodies of text and includes experiments illustrating
how these spaces can model' human concept similarity.
This procedure underlies the development of our repre­
sentational model ofsemantic memory, called hyperspace
analogue to language (HAL). The procedure requires no
explicit human judgments concerning word meanings
outside of those implicitly expressed by the authors of
the text being analyzed. The experiments presented here
all use the same basic methodology to form vector repre­
sentations ofword meanings. This is the methodology we
have used in a variety of experiments (Burgess & Lund,
1995b, in press; Lund & Burgess, in press; Lund et al.,
1995) and is similar to that of Landauer and Dumais
(1994), Schiitze (1992), and Schvaneveldt (1990).
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BASIC METHODOLOGY

Table 1
Example Matrix for "The Horse Raced Past the Barn FeU"

(Computed for Window Width of Five Words)

In this procedure, a "window," representing a span of
words, is passed over the corpus being analyzed. The width
of this window can be varied, and in Experiment 3 the ef­
fects of differing window sizes on model performance
will be examined.

Words within this window are recorded as co-occurring
with a strength inversely proportional to the number of
other words separating them within the window. For in­
stance, in the preceding sentence, the words "inversely" and
"proportional" would receive a maximum co-occurrence
value, while "inversely" and "separating" would be con­
sidered to co-occur more weakly (ifthe window was even
wide enough to include them both).

By moving this window over the source corpus in one­
word increments and recording, at every window move­
ment, the co-occurrence values of the words within it, a
co-occurrence matrix can be formed. This matrix has, as
axes, the entire vocabulary under consideration, such
that each cell of the matrix represents the summed co­
occurrence counts for a single word pair. ("Word pair,"
in this discussion, is direction sensitive. Counts for the
sequence "xy" and counts for the sequence "yx" are in
different cells.)

This process produces a matrix in which, for every word
in the target vocabulary, there is both a row and a col­
umn containing relevant values (for instance, the row may
contain co-occurrence information for words appearing
before the word under consideration, while the column
contains co-occurrence information for words following
it). This row/column pair may be concatenated so that,
given an n X n co-occurrence matrix, a co-occurrence vec­
tor oflength 2n is available. This vector of2n length can
be conceptualized as representing a word in 2n high­
dimensional space. This can result in a very long vector,
however. We have found that the effects reported in this
paper rely on only the 100 to 200 most variant vector ele­
ments. Further reduction may be achieved, at the expense
of computational complexity, by retaining some rela­
tively small number of principal components of the co­
occurrence matrix. Table 1 shows an example matrix com­
puted for the sentence "the horse raced past the barn fell,"
using a window width of five words.

The corpus that we analyzed to produce the matrices
examined in the experiments presented here consists of

(1)

approximately 160 million words oftext taken from Use­
net newsgroups. The text was gathered during February
of 1995 from all Usenet newsgroups carrying text. Use­
net was chosen as a source oftext for three main reasons.
First, a virtually limitless supply of text is available; dur­
ing the collection period, roughly 10 million words of new
text were available each day.Second, it covers a very broad
range of topics, which leads to a large range ofpotential
word interactions. Third, the text is conversational and
noisy, much like spoken language. No other available cor­
pus offers these three advantages.

Once the matrices are constructed, similarity measure­
ments can be applied to word vectors; this, we hoped,
would yield a measure of semantic similarity between any
desired pair of words. The distance metrics used in the
following experiments all come from the Minkowski fam­
ily of distance metrics, which include the familiar Eu­
clidean (if r = 2) and city-block (if r = 1) metrics:

distance = ~L(lxj - Yj Ir·

If the procedure outlined above succeeds in capturing
information about word meaning in the vectors devel­
oped, this should be apparent by examining similarities
between vectors. Vectors representing words with simi­
lar meanings should themselves be similar, and, like­
wise, vectors for dissimilar words should have signifi­
cant differences. See Figure 1 for examples of25-element
co-occurrence vectors. The vector comparison proce­
dure used in this experiment will be the Euclidean dis­
tance between vectors; this corresponds to a Minkowski
metric with r = 2.0.

Rather than select word pairs manually and examine the
distances between them, we chose to examine, for each tar­
get word, the distances from that word ofall other words in
the vocabulary. These could then be ranked by distance
to reveal the closest "neighbors" in the co-occurrence
space to the target word. If the closest of these neighbors
were words with meanings similar to that of the target
word, we could conclude that the co-occurrence tabula­
tion procedure was successful in evaluating relative word
meanings.

EXPERIMENT 1

Because these metrics are sensitive to vector magnitude,
vectors were normalized to a constant length before the
distance metrics were applied.

In Experiment 1, the distances between word vectors
were examined to determine whether or not similarity in
word meaning corresponded to similarity in patterns of
vector elements. In Experiment 2, an attempt was made to
demonstrate that the relationships found in Experiment 1
could be used in categorization and classification tasks.
In Experiment 3, the effects ofvarying model parameters
(window size and the distance metric) were explored and
the model's performance on a more quantitative level as
it relates to human performance was examined.
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Figure 1. Gray-scaled 25-element co-occurrence vectors.

Method
A co-occurrence matrix was computed using a window size of 10

words. The input corpus was 160 million words oftext from Usenet
news groups. Any token appearing at least 50 times within the cor­
pus was tracked as a vocabulary item, resulting in a vocabulary of
roughly 70 thousand "words." Twenty target words were selected at
random from the middle frequency range ofthe words appearing in
the input corpus; limiting the frequency range in this manner elim­
inated both common function words and rare technical terms.

For each target word, a Euclidean distance was computed from
the word to each vocabulary item, resulting in a set of70 thousand
distances. These were then sorted, and the neighbors with the small­
est distances were examined. A sample of the results is shown in
Table 2.

Results and Discussion
Examination of Table 2 shows that near neighbors of

words in the co-occurrence space share aspects ofmean­
ing. These relationships appear to be both semantic (jugs­
cans, cardboard-plastic) and associative (lipstick-lace,
monopoly-threat). The results suggest that the high-di­
mensional neighborhood surrounding each word is
something akin to a semantic field.

EXPERIMENT 2

In this experiment we sought to determine whether or
not the co-occurrence matrix-construction procedure
would result in word vectors that carried categorical in­
formation. Multidimensional scaling has been shown to
be useful in finding structure in data that can be repre­
sented by item similarity evaluations (Shepard, Romney,
& Nerlove, 1972). In this experiment, multidimensional
scaling was applied to a set ofco-occurrence vectors to de­
termine whether or not intervector distances could pro­
vide a credible substitute for human similarity judgments.

Method
Words representing three categories (animal names, body parts,

and geographical locations ) were chosen, and word vectors for these

words were extracted from a co-occurrence matrix that had been
constructed using a co-occurrence window width of 10 words. Item
similarities were computed using a Minkowski r metric with r = 2
(see Equation 1). A multidimensional scaling was performed on this
similarity data to produce a two-dimensional solution.

Results and Discussion
Figure 2 shows the obtained solution with lines added

to help clarify the delineation of categories. The geo­
graphical locations, being very unlike either body parts
or animals, are clearly represented as a distinct group.
The body parts and animal types are also quite well sep­
arated, with only the body part "tooth" intruding into the
cluster ofanimal names. Intuitively, "tooth" is a particu­
larly salient body part for animals.

This result validates the basic methodology. No ex­
plicit human judgments about item similarity were used
in this procedure, and yet the simulation results in a plau­
sible categorization of three sets of items. This demon­
strates that the co-occurrence procedure used was suc­
cessful in extracting general semantic information from
the corpus.

EXPERIMENT 3

This experiment expanded on the results of Experi­
ment 2 by comparing vector similarities with reaction
times from a lexical priming study across a range of
methodological parameters (manipulating co-occurrence
window size and distance metric). Word similarity has
been established as an important factor in subjects' reac­
tion times to prime-target pairs (Chiarello, Burgess, Rich­
ards, & Pollock, 1990; Lund et al., 1995; Neely, 1977), so
an analysis of the relationship between vector similari­
ties for word pairs and lexical decision times to the tar­
gets of the same word pairs should help to illuminate the
relationship between word meanings and co-occurrence
vectors.

Target

jugs
leningrad
lipstick
triumph
cardboard
monopoly

Table 2
Five Nearest Neighbors for Target Words

From Experiment 1 (nl ... n5)

juice butter vinegar bottles
rome iran dresden azerbaijan
lace pink cream purple
beauty prime grand former
plastic rubber glass thin
threat huge moral gun

n5

cans
tibet
soft
rolling
tiny
large

Method
Related prime-target pairs from Chiarello et al. (1990) were used,

along with unrelated word pairs as controls, in a lexical decision
task. Subjects were presented with a fixation point, followed by the
prime word; after a 250-msec SOA, the target word (or a nonword)
was presented and the subject's decision time was recorded.

Vector similarities were computed for these word pairs. Six co­
occurrence matrices were analyzed. The matrices varied in the win­
dow width used to construct them (1-, 2-, 4-, 6-, 8-, and lO-word
windows). Distances were computed using each of three r metrics
(rs = 1, 1.5, and 2). Correlations were calculated between vector
similarities for word pairs and reaction times for those same pairs.
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Figure 2. Multidimensional scaling of co-occurrence vectors.

Results and Discussion
Figure 3 shows the correlations between semantic dis­

tance and reaction time (all correlations significant, p <
.0001). Generally, performance improved as r decreased;
performance also varied considerably with window size,
with a peak at width 8, Optimal performance was ob­
tained using an r of1.0. This result is consistent with Shep­
ard's (1980) proposal that r values close to 1might be best
suited for analyses in the semantic domain.

This experiment demonstrates a sizable correlation
between vector similarity and basic cognitive effects. It
also helps to establish desirable parameters for the co­
occurrence analysis process. The correlations obtained
in this experiment between semantic distance and reac­
tion time are similar to the results reported by Fischler
(1977). He found a correlation of 0.31 between human
similarity estimates and the single-word priming effect
in his experiment.

GENERAL DISCUSSION

This series of experiments has described a methodol­
ogy capable ofcapturing information about word mean­
ings through the unsupervised analysis of text. This
promises to be a generally useful technique for the analy­
sis ofword semantics, as well as providing an alternative
to the traditional methods of generating feature vectors
for words.

The use of lexical co-occurrences in obtaining seman­
tic information requires further discussion. Lexical co­
occurrence has been shown to correlate with human as­
sociation norms (Spence & Owen, 1990). In Experiment 1,
nearest neighbors included items that seemed to be both
semantically related as well as associatively related.
Whether or not related word pairs are related associa­
tively, their semantic relationship, or some combination
of the two, has often, if not typically, been confounded
(Chiarello et al., 1990). There is evidence that the vec­
tors produced by this procedure are more semantic, that
is, similarity based, than associative in nature. In a sim­
ulation of a variety of semantic and associative priming
results, these semantic vectors provided a robust related­
ness effect (semantic distance of related pairs < seman­
tic distance of unrelated pairs) for items that were se­
mantically, but not associatively, related, for example,
table-bed. Items that were associatively, but not seman­
tically, related did not show a reliable relatedness effect,
for example, coffee-cup (Lund et al., 1995).

The implication ofthese results is important. The vec­
tors generated by HAL function semantically. Although
their genesis resides in the first-order association oflex­
ical co-occurrence, the vectors do not ultimately rely on
the associative components to provide the semantic ef­
fect. This claim is illustrated by a comparison ofthe word
vectors shown in Figure 1. The concepts ofcoffee and tea
are similar and strongly associated. They tend to co-occur
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Figure 3. Correlations between vector distances and human reaction times for three
distance metrics.

in natural language, and their similarity can be seen in
their vector representations. These can be contrasted to
road and street. Again, although these are two concepts
that are highly similar, they do not tend to co-occur in
usage, yet their vector representations are very similar.

HAL acquires word meanings as a function ofkeeping
track ofhow words are used in context by using the mov­
ing window and weighting co-occurrence distance. Over
millions ofwords ofexperience, the matrix that develops
carries the history of this contextual experience. Similar
representations tend to be words that can be substituted
for each other in context. For example, such semantically
similar items as bed and table are relatively interchange­
able in Sentences 1a and 1b. Contrast this with such items
as cradle and baby, which are only associatively related
in Sentences 2a and 2b:

1a. The child slept on the bed.
1b. The child slept on the table.

2a. The child slept in the cradle.
2b. The child slept in the baby.

The semantic vectors are representations that are essen­
tially measures of context; that lexical co-occurrence is
an important component in the acquisition process be­
comes independent of the eventual generalizations that
the semantic vectors represent. It has been a long-held be­
liefthat word relations evolve through both co-occurrence
in language as well as the substitutability ofwords in con­
.texts (Ervin-Tripp, 1970). These vectors capture the sub­
stitutability, the semantic similarity, of word relations.

In the present series of experiments, the representations
that HAL develops have demonstrated some basic effects
that would be required of microstructural semantics. In
Experiment 1, the "nearest neighbors" demonstration
showed that the semantic field surrounding the concept
includes important aspects of a word's relationships to
other words. Experiment 2 demonstrated that the vectors
can be used to classify instances of superordinate cate-

gories. Finally, in Experiment 3, the semantic distances
were shown to correlate with human reaction times in a
lexical priming study.

In other experiments, semantic vectors generated by
using HAL have accounted for a range of semantic and
associative priming results using stimuli from various in­
vestigators (Lund et al., 1995). Semantic constraints used
during higher level sentence comprehension and syntactic
processing can be characterized by using these vectors
(Burgess & Lund, 1995a). The semantic representations
have also been used as the representational basis for de­
veloping a model of cerebral asymmetries in lexical!
semantic processing (Burgess & Lund, in press). This
broad range ofresults suggests that these representations
provide the basic representational microstructure that
can be used to model various aspects ofhuman semantic
memory, to analyze stimuli, or to construct information­
retrieval tools.

HAL represents a procedure for acquiring semantic
representations in an unsupervised fashion in a noisy,
conversation-like environment without the heavy pre­
processing of text required by other automated systems
(Armstrong, 1994; Zemik, 1991). The methodology easily
exploits the regularities oflanguage such that conceptual
generalizations can be captured in a data matrix, making
it straightforward to use in modeling human memory.
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