Unit 3: Learning from other people

6. Modern language models

11/24/2020

Modern language models

- 1. Embedding models are a general class of models for representing meaning in a vector-space
- 2. Embedding models can be used to understand aspects of cognition and language
- 3. The leading edge of models don't represent "meaning" anymore at all

How do you know so much without being told about it?

Plato's Problem:

Plato's Solution: Knowledge is innate Plato (380 BC)

Chomsky's Problem:

Chomsky's Solution:

Chomsky (1986)

Even uneducated people seem to know a lot

Children seem to learn language from insufficient input

Universal grammar is innate

Blind adults color similarities look a lot like sighted adults

COLOR LEGEND:

I. RED 2.ORANGE 3.GOLD 4. YELLOW 5.GREEN 6. TURQUISE 7. BLUE 8. PURPLE 9. VIOLET

Marmor (1978)

Red onions are sweeter than white ones

Red hair occurs naturally in one to two percent of the human population

Pittsburgh one of U.S. cities with highest number of gray days

Fall tips for a **green** spring lawn

Lake Tahoe stretches 22 miles long and 12 miles wide, with clear **blue** water that's more than 99 percent pure

Direct information:

There is a relationship between e.g. red and hair

Indirect information:

Red, white, gray, green, and blue are used in *similar contexts*.

Contexts for e.g. blue and green are more similar than blue and red

Embedding models: Representing words as vectors

Token index in the vocabulary **39** 1592 10 2548 5 1 1 1 saw a cat

What goes in the embeddings?

Adapted from Lena Voita

A simple idea: embeddings as co-occurrence counts

contexts for cat

Hyperspace analogies to language (HAL) - Lund & Burgess (1996)

(Computed for Window Width of Five Words)							
	barn	fell	horse	past	raced	the	
<period></period>	4	5	0	2	1	3	
barn	0	0	2	4	3	6	
fell	5	0	1	3	2	4	
horse	0	0	0	0	0	5	
past	0	0	4	0	5	3	
raced	0	0	5	0	0	4	
the	0	0	3	5	4	2	

-1 D -4 41 - D

Five Nearest Neighbors for Target Words From Experiment 1 (n1 n5)						
Target	nl	n2	<i>n</i> 3	n4	n5	
ugs juice leningrad rome	juice rome	butter iran	vinegar dresden	bottles azerbaijan	cans tibet	
lipstick triumph	lace beauty	pink prime	cream grand	purple former	soft rolling	
cardboard	plastic	rubber	glass	thin	tiny	
monopoly	threat	huge	moral	gun	large	

Latent semantic analysis is a smarter embedding model than HAL

each element says about the association between a word and a context

Insight: co-occurring with son more meaningful

Reduce dimensionality: Truncated Singular Value Decomposition (SVD)

Insight: co-occurring with some words (or in some contexts) is

Can we do this separately for each word?

We want to predict a word's **context** from that word

Learning contexts using a skip-gram model (Word2Vec) - Mikolov et al. (2013)

Target words' embeddings

Likelihood: $L(\theta) = \prod P(w_{t+j}|w_t, \theta)$ t=1 $-m\leq j\leq m, j\neq 0$

Target words' embeddings

 W_{t-2} W_{t-1} W_t W_{t+1} W_{t+2}

Estimating words' embeddings by gradient descent

Likelihood:
$$L(heta) = \prod_{t=1}^{T} \prod_{-m \leq j \leq m, j \neq 0} I$$

$\theta^{new} = \theta^{old} - \alpha \nabla_{\theta} J(\theta)$

 $P(w_{t+j}|w_t, heta)$

Estimating words' embeddings by gradient descent

... I saw a cute grey cat playing in the garden ...

$$P(o|c) = \frac{\exp(u_o^T v_c)}{\sum_{w \in V} \exp(u_w^T v_c)}$$

Estimating words' embeddings by gradient descent

cute grey cat playing in the garden ...

U

$$u_w := u_w - \alpha \frac{\partial J_{t,j}(\theta)}{\partial u_w} \forall w \in V$$

Two ways of estimating Word2Vec

Skip-gram

... I saw a cute grey cat playing in the garden ...

Continuous bag of words (CBOW)

Word2Vec geometry is surprisingly meaningful!

Mikolov et al. (2013)

Global Vectors for Word Representation (GloVe - Pennington, Socher, & Manning, 2014)

 $f(\mathbf{X})$

0

Weighting function to:

- penalize rare events
- not to over-weight frequent events

bias terms (also learned)

 $\begin{cases} (x/x_{max})^{\alpha} \text{ if } x < x_{max}, \\ 1 & \text{otherwise.} \end{cases}$ $\alpha = 0.75, x_{max} = 100$

The structure in embeddings

The structure in embeddings

Embeddings encode both semantic and syntactic relationships

- semantic: $v(king) v(man) + v(woman) \approx v(queen)$
- syntactic: $v(kings) v(king) + v(queen) \approx v(queens)$

Exploring embedding models

http://vectors.nlpl.eu/explore/embeddings/en/

Embedding similarities predict human similarity judgments

pig

Kim, Elli, & Bedny (2019)

Lewis, Zettersten, & Lupyan (2019)

Using embeddings to estimate translatability (Thompson, Roberts, & Lupyan, 2020)

Wikipedia

Cross-linguistic semantic alignment

The problem with "meaning"

$v(king) - v(man) + v(woman) \approx v(queen)$

PROBABILISTIC GENERATIVE PROCESS

TOPIC 2

What about **big**. Or **red**. Or **monster**.

The problem with "meaning"

$v(king) - v(man) + v(woman) \approx v(queen)$

PROBABILISTIC GENERATIVE PROCESS

TOPIC 2

What about **big**. Or **red**. Or **monster**.

Word2Vec/Glove embeddings vs. Contextual embeddings

Adapted from Jacob Devlin

Bidirectional Transformers for Language Understanding (BERT - Devlin et al., 2018)

Training to predict masked words

Fine-tuning for individual tasks

(a) Sentence Pair Classification Tasks: MNLI, QQP, QNLI, STS-B, MRPC, RTE, SWAG

(b) Single Sentence Classification Tasks: SST-2, CoLA

System	MNLI-(m/mm)	QQP	QNLI	SST-2	CoLA	STS-B	MRPC	RTE	Average
	392k	363k	108k	67k	8.5k	5.7k	3.5k	2.5k	-
Pre-OpenAI SOTA	80.6/80.1	66.1	82.3	93.2	35.0	81.0	86.0	61.7	74.0
BiLSTM+ELMo+Attn	76.4/76.1	64.8	79.9	90.4	36.0	73.3	84.9	56.8	71.0
OpenAI GPT	82.1/81.4	70.3	88.1	91.3	45.4	80.0	82.3	56.0	75.2
BERTBASE	84.6/83.4	71.2	90.1	93.5	52.1	85.8	88.9	66.4	79.6
BERTLARGE	86.7/85.9	72.1	91.1	94.9	60.5	86.5	89.3	70.1	81.9

(c) Question Answering Tasks: SQuAD v1.1

(d) Single Sentence Tagging Tasks: CoNLL-2003 NER

BERT demo

https://demo.allennlp.org/masked-lm

Modern language models

- 1. Embedding models are a general class of models for representing meaning in a vector-space
- 2. Embedding models can be used to understand aspects of cognition and language
- 3. The leading edge of models don't represent "meaning" anymore at all