
What learning mechanisms are available to
infants on the cusp of language learning?
One learning mechanism that young infants
can exploit is statistical in nature. For
example, Saffran et al. (1) found that the
looking behaviors of 8-month-old infants
indicated a sensitivity to statistical
information inherent in sequences of speech
sounds produced in an artificial language--
for example, transitional probabilities,
which are estimates of how likely one item
is to follow another. In the corpus of
sentences "The boy loves apples. The boy
loves oranges." the transitional probability
between the words "the" and "boy" is
1.0 but the transitional probability between
the words "loves" and "apples" is 1/2 = 0.5.

It has been suggested that mechanisms
that track statistical information, or
connectionist models that rely on similar
sorts of information [for example, the
simple recurrent network (SRN) (2)], may
suffice for language learning (3). The
alternative possibility considered here is
that children might possess at least two
learning mechanisms, one for learning
statistical information and another for
learning "algebraic" rules (4)--open-ended
abstract relationships for which we can
substitute arbitrary items. For instance, we
can substitute any value of x into the
equation y = x + 2. Similarly, if we know
that in English a sentence can be formed by
concatenating any plural noun phrase with
any verb phrase with plural agreement, then

as soon as we discover that "the three
blickets" is a well-formed plural noun
phrase and that "reminded Sam of Tibetan
art" is a well-formed verb phrase with
plural agreement, we can infer that "The
three blickets reminded Sam of Tibetan
art." is a well-formed sentence.

To date, however, there has been no
direct empirical test for determining
whether young infants can actually learn
simplified versions of such algebraic rules.
A number of previous experiments drawn
from the literature of speech perception
(not aimed at the question of rule learning)
are consistent with the possibility that
infants might learn algebraic rules, but each
of these prior experiments could be
accounted for by a system that extracted
only statistical tendencies. For example,
infants who are habituated to a series of
two-syllable words attend longer when
confronted with a three-syllable word (5).
An infant who attended longer to a three-
syllable word might have noticed a
violation of a rule (for example, "all the
words here are two syllables"), but an infant
could also have succeeded with a statistical
device that noted that the three-syllable
word had more syllables than the average
number of syllables in the preceding
utterance. Similarly, Gomez and Gerken (6)
found that infants who were habituated to a
set of sentences constructed from an
artificial grammar (VOT-PEL-JIC; PEL-
TAM-PEL-JIC) could distinguish between
new sentences that were consistent with this
grammar (VOT-PEL-TAM-PEL-JIC) from
new sentences that were not consistent
(VOT-TAM-PEL-RUD-JIC). Such learning
might reflect the acquisition of rules, but
because all the test sentences were
constructed with the same words as in the
habituation sentences (albeit rearranged), in
these test sentences it was possible to
distinguish the test sentence on the basis of

statistical information such as transitional
probabilities (for example, in the training
corpus, VOT was never followed by
TAM)--without recourse to a rule.

We tested infants in three experiments
in which simple statistical or counting
mechanisms would not suffice to learn the
rule that was generating the sequences of
words. In each experiment, infants were
habituated to three-word sentences
constructed from an artificial language (7)
and then tested on three-word sentences
composed entirely of artificial words that
did not appear in the habituation. The test
sentences varied as to whether they were
consistent or inconsistent with the grammar
of the habituation sentences. Because none
of the test words appeared in the
habituation phase, infants could not
distinguish the test sentences based on
transitional probabilities, and because the
test sentences were the same length and
were generated by a computer, the infant
could not distinguish them based on
statistical properties such as number of
syllables or prosody.

We tested infants with the
familiarization preference procedure as
adapted by Saffran et al. (1, 8, 9); if infants
can abstract the underlying structure and
generalize it to novel words, they should
attend longer during presentation of the
inconsistent items than during presentation
of consistent items.

Subjects were 7-month-old infants,
who were younger than those studied by
Saffran et al. but still old enough to be able
to distinguish words in a fluent stream of
speech (8). In the first experiment,
16 infants were randomly assigned to either
an "ABA" condition or an "ABB"
condition. In the ABA condition, infants
were familiarized with a 2-min speech
sample (10) containing three repetitions of
each of 16 three-word sentences that
followed an ABA grammar, such as "ga ti
ga" and "li na li." In condition ABB, infants
were familiarized with a comparable speech
sample in which all training sentences
followed an ABB grammar, such as "ga ti
ti" and "li na na" (11).

In the test phase, we presented infants
with 12 sentences that consisted entirely of
new words, such as "wo fe wo" or "wo fe
fe" (12). Half the test trials were "consistent
sentences," constructed from the same
grammar as the one with which the infant
was familiarized (an ABA test sentence for
infants trained in the ABA condition and an
ABB sentence for infants trained in the
ABB condition), and half the test trials
were "inconsistent sentences" that were
constructed from the grammar on which the
infant was not trained (13).

We found that 15 of 16 infants showed
a preference for the inconsistent sentences
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(14), which was indicated by their looking
longer at the flashing side light during
presentations of those sentences (15) (Table
1).

Although each of the test words in
experiment 1 was new, the sequence of
phonetic features in the test overlapped to
some extent with the sequence of phonetic
features in the habituation items. For
example, in the ABA condition three
habituation sentences contained a word
starting with a voiced consonant followed
by a word starting with an unvoiced
consonant. Each of these three sequences
ended with a word that contained a voiced
consonant. An infant who was thus
expecting the sequence voiced-unvoiced-
voiced would be surprised by the
inconsistent tests items (each of which was
voiced-unvoiced-unvoiced) but not by the
consistent items (each of which was voiced-
unvoiced-voiced). To rule out the
possibility that infants might rely on
learning sequences of particular phonetic
features rather than deriving a more
abstract rule, we conducted a second
experiment with the same grammars as in
the first experiment but with a more
carefully constructed set of words. In
experiment 2, then, the set of phonetic
features that distinguished the test words
from each other did not distinguish the
words that appeared in the habituation
sentences (16). For example, the test words
varied in the feature of voicing (for
example, if the "A" word was +voiced, the
"B" word was -voiced), whereas the
habituation words did not vary on the
feature of voicing (they were all +voiced).
Thus, the habituation items provided no
direct information about the relationship
between voiced and unvoiced consonants;
the same holds for each of the phonetic
features that varied in the test items. As in
experiment 1, 15 of 16 infants looked
longer during the presentation of the
inconsistent items than during the
presentation of the consistent items (17)
(Table 1).

Rather than encoding the entire ABA
or ABB rule, the infants could have
habituated to a single property that
distinguishes these grammars. Strings from
the ABB grammar contain immediately
reduplicated elements (for example, "ti ti"),
whereas strings from the ABA grammar do
not. In a third experiment, we compared
sentences constructed from the ABB
grammar with sentences constructed from
an AAB grammar (18, 19); because
reduplication was contained in both
grammars, the infants could not distinguish
these grammars solely on the basis of
information about reduplication (20). As in
the first two experiments, infants (this time,
16 of 16) looked longer during presentation
of the inconsistent items than during
presentation of the consistent items (21)
(Table 1).

Our results do not call into question
the existence of statistical learning
mechanisms but show that such
mechanisms do not exhaust the child's
repertoire of learning mechanisms. A
system that was sensitive only to
transitional probabilities between words
could not account for any of these results,
because all the words in the test sentences
are novel and, hence, their transitional
probabilities (with respect to the
familiarization corpus) are all zero.
Similarly, a system that noted discrepancies
with stored sequences of words could not
account for the results in any of the three
experiments, because both the consistent
items and the inconsistent items differ from
any stored sequences of words. A system
that noted discrepancies with stored
sequences of phonetic features could
account for the results in experiment 1 but
not those in experiments 2 and 3. A system
that could count the number of reduplicated
elements and notice sentences that differ in
the number of reduplicated elements could
account for the results in experiments 1 and
2, but it could not account for infants'
performance in experiment 3.

Likewise, we found in a series of

simulations that the SRN is unable to
distinguish the inconsistent and consistent
sentences, because the network, which
represents knowledge in terms of a set of
connection weights, learns by altering
network connection weights for each word
independently (22). As a result, there is no
generalization to novel words. Such
networks can simulate knowledge of
grammatical rules only by being trained on
all items to which they apply; consequently,
such mechanisms cannot account for how
humans generalize rules to new items that
do not overlap with the items that appeared
in training (23, 24).

We propose that a system that could
account for our results is one in which
infants extract abstract algebra-like rules
that represent relationships between
placeholders (variables), such as "the first
item X is the same as the third item Y," or
more generally, that "item I is the same as
item J." In addition to having the capacity
to represent such rules, our results appear to
show that infants have the ability to extract
those rules rapidly from small amounts of
input and to generalize those rules to novel
instances. If our position is correct, then
infants possess at least two distinct tools for
learning about the world and attacking the
problem of learning language: one device
that tracks statistical relationships such as
transitional probabilities and another that
manipulates variables, allowing children to
learn rules. Even taken together, these tools
are unlikely to be sufficient for learning
language, but both may be necessary
prerequisites.
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Table 1.Mean time spent looking in the direction of the consistent and inconsistent stimuli in each
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experiment 3.

Mean listening time (s) (SE)
Exp.

Consistent sentences Inconsistent sentences

Repeated measures analysis of variance

1 6.3 (0.65) 9.0 (0.54) F(14) = 25.7, P < 0.001

2 5.6 (0.47) 7.35 (0.68) F(14) = 25.6, P < 0.005

3 6.4 (0.38) 8.5 (0.5) F(14) = 40.3, P < 0.001



8. P. Jusczyk and R. N. Aslin, Cogn. Psychol.
29, 1 (1995).

9. Infants sat in a three-sided booth on the
laps of their parents (parents wore
headphones playing classical music so that
they could not hear the stimulus materials)
and listened to sounds generated off-line by
a speech synthesizer. The booth had a
yellow bulb on the center panel; each side
panel had a red bulb. A speaker was behind
each of the red bulbs. The speakers were
connected to a G3 Power Macintosh
computer that presented the stimuli and
controlled the lights. During the
familiarization phase, the yellow light
flashed to draw the infant's attention to the
center panel of the testing booth while the
familiarization speech segment played from
both speakers. After the familiarization
ended, the infant was presented with test
trials. At the beginning of each test trial,
the central light was flashed. Once an
observer (who also wore headphones
playing music to mask the stimuli)
indicated that the infant had fixated on the
flashing light, the central light was turned
off and one of the two side lights began
flashing. When the observer indicated that
the infant had turned toward the side light,
the computer played a three-word test
sentence from the speaker that was hidden
behind the light, which repeated the test
sentence over and over (with a 1.2- to 1.5-s
pause between presentations of the test
sentence) until either the infant had turned
away for two continuous seconds or until
15 s had elapsed. The dependent measure
was the total time that the infant spent
looking at the light associated with the
speaker. Infants who became fussy prior to
completion of at least four test trials were
not included in the statistical analyses.

10. The first six subjects (three in each
condition) were familiarized with 3-min
speech samples.

11. The 16 sentences that followed an ABA
pattern were "ga ti ga," "ga na ga," "ga gi
ga," "ga la ga," "li na li," "li ti li," "li gi li,"
"li la li," "ni gi ni," "ni ti ni," "ni na ni," "ni
la ni," "ta la ta," "ta ti ta," "ta na ta," and "ta
gi ta." The 16 sentences that followed the
pattern ABB were "ga ti ti," "ga na na," "ga
gi gi," "ga la la," "li na na," "li ti ti," "li gi
gi," "li la la," "ni gi gi," "ni ti ti," "ni na
na," "ni la la," "ta la la," "ta ti ti," "ta na
na," and "ta gi gi". Vocalizations of the
words used in the above sentences were
created with a speech synthesizer, which is
available at www.bell-
labs.com/project/tts/voices-java.html. The
vocalizations were then combined to form
the sentences listed above by using a sound
editor. A 250-ms pause was placed
between consecutive words in each
sentence. The sentences were presented in
random order and separated by pauses of
1 s.

12. The 12 test trials, which were randomly
ordered, included three repetitions of each
of four test sentences, two following the
ABB pattern ("wo fe fe" and "de ko ko")
and two following the ABA pattern ("wo fe
wo" and "de ko de").

13. Similar stimuli were used in a study of
children's memory and attention [J. V.
Goodsitt, P. A. Morse, J. N. Ver Hoeve,
Child Dev. 55, 903 (1984)]. That study
does not, however, answer our question
about rules, because it tested only how well
an infant could remember target B in the
context of sequences ABA versus AAB
versus ABC and not whether infants
familiarized with one of those sequences
could distinguish it from another.

14. Results for the ABA and ABB conditions
were combined, because there was no
significant interaction between them,
F(1,14) = 0.15.

15. Similar results involving transfer from one
finite state grammar to another with the
same structure but different words have
been reported for adult subjects [ A. Reber,
J. Exp. Psychol. 81, 115 (1969) ] and for
11-month-old infants (R. L. Gomez and L.-
A. Gerken, paper presented at the Annual
Meeting of the Psychonomics Society,
Philadelphia, PA, November 1997). These
researchers, whose focus was not on rule
learning, did not include the phonetic
control we introduce in experiments 2 and
3.

16. The 16 habituation sentences that followed
the ABA pattern were "le di le," "le je le,"
"le li le," "le we le," "wi di wi," "wi je wi,"
"wi li wi," "wi we wi," "ji di ji," "ji je ji,"
"ji li ji," "ji we ji," "de di de," "de je de,"
"de li de," "de we de"; ABB items were
constructed with the same vocabulary. The
test trials were "ba po ba," "ko ga ko"
(consistent with ABA), "ba po po," and "ko
ga ga" (consistent with ABB).

17. Results for the ABA and ABB conditions
were combined, because there was no
significant interaction between them,
F(1,14) = 1.95.

18. In principle, an infant who paid attention
only to the final two syllables of each
sentence could distinguish the AAB
grammar from the ABB grammar purely on
the basis of reduplication, but they could
not have succeeded in the experiment of
Saffran et al. (1).

19. We thank an anonymous reviewer for
suggesting this comparison. The
vocabulary used to construct the test and
familiarization items was the same as in
experiment 2; hence, as in experiment
2, the phonetic features that distinguished
the test words from each other did not vary
in the habituation items.

20. The ability to extend reduplication to novel
words appears to depend on an algebraic
rule. To recognize that an item is
reduplicated, a system must have the ability
to store the first element and compare the
second element to the first; the storage,
retrieval, and inferential mechanisms that
are involved may appear simple but are
outside the scope of most neural network
models of language and cognition.
Conversely, adults are strongly sensitive to
the presence of reduplication and its
location in phonological constituents [I.
Berent and J. Shimron, Cognition 64, 39
(1997)]. For further discussion, see
references cited in (22).

21. Results for the AAB and ABB conditions
were combined, because there was no
significant interaction between them,
F(1,14) = 0.002.

22. The sort of generalizations that such
models can draw are dictated by the choice
of input representations. If input nodes
correspond to words, the model cannot
generalize the abstract pattern to new
words; if the input nodes correspond to
phonetic features, the model cannot
generalize to words containing new
phonetic features [ G. F. Marcus, Cognition
66, 153 (1998); Cogn. Psychol., in press].
An appropriately configured SRN that
represented each word by a set of nodes for
phonetic features, if it were trained that a
voiced consonant followed by an unvoiced
consonant was always followed by a
voiced consonant, could use memorized
sequences of features as a basis to
distinguish the test items in experiment
1. However, such a model could not
account for the results of experiments 2 and
3, because in those experiments the feature
sequences that the network learned about in
the familiarization phase would not
distinguish the test items.

23. An enhanced version of the SRN [Z.
Dienes, G. T. M. Altmann, S. J. Gao, in
Neural Computation and Psychology,
L. S. Smith and P. J. B. Hancock, Eds.
(Springer-Verlag, New York, 1995)] aims
to model how speakers who are trained on
one artificial language are able to learn a
second artificial language that has the same
structure more rapidly than a second
artificial language that has a different
structure. This model would not be able to
account for our data, however, because the
model relies on being supplied with
attested examples of sentences that are
acceptable in the second artificial language,
whereas our infants succeeded in the
absence of such information.

24. The problem is not with neural networks
per se but with the kinds of network
architectures that are currently popular.
These networks eschew explicit
representations of variables and
relationships between variables; in contrast,
some less widely discussed neural
networks with a very different architecture
do incorporate such machinery and thus
might form the basis for learning
mechanisms that could account for our data
[ J. E. Hummel and K. J. Holyoak, Psychol.
Rev. 104, 427 (1997)]. Our goal is not to
deny the importance of neural networks but
rather to try to characterize what properties
the right sort of neural network architecture
must have.
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It is a cliché of neuroscience that the brain
works differently from a digital computer.
But the report by Marcus et al. in this issue
on page 77 (1) demonstrating "rule
learning by seven-month-old infants"
suggests that one of the mechanisms that
makes computers intelligent--manipulating
symbols according to rules--may be a basic
mechanism of the human brain as well.
Hundreds of years before anyone knew
anything about brains or computers, two
very different conceptions arose of how the
mind works:

"When a man reasons, he does
nothing else but conceive a sum total
from addition of parcels, or conceive a
remainder from subtraction of one
sum from another; which, if it be
done by words, is conceiving of
the consequence of the names of
all the parts to the name of the
whole, or from the names of the
whole and one part to the name of
the other part. ... For REASON is
nothing but reckoning."

In this passage from Leviathan,
written in 1651 (2), Thomas Hobbes uses
"reckoning" in the original sense of
"calculating" or "computing." For example,
if the definition of "man" is "rational
animal," and we are told that something is
"rational" and an "animal" (names of parts),
we can deduce it is a "man" (name of
whole). If these symbols are represented as
patterns of activity in the brain, and if some
patterns trigger other patterns because of
the way the brain is organized, then we
have a theory of intelligence. That theory
became the basis of the rationalist
philosophy of Descartes and Leibniz, and
much later, information-processing models
in cognitive psychology, Noam Chomsky's
theory of generative grammar, and
programs for language and reasoning in
artificial intelligence.

But there is an alternative:

"There appear to be only three
principles of connection among
ideas, namely, resemblance,
contiguity in time or place, and
cause or effect. Experience
teaches us that a number of
uniform effects result from certain
objects. When a new object,
endowed with similar sensible
qualities, is produced, we expect
similar powers and forces and
look for a like effect. From a body

of like color and consistence with
bread we expect like nourishment
and support."

In this passage from his 1748 Enquiry
Concerning Human Understanding, David
Hume summarizes the theory of
associationism. The mind connects things
that are experienced together or that look
alike, and generalizes to new objects
according to their resemblance to known
ones. Replace Hume's "ideas" or "sensible
qualities" with "stimuli" and "responses,"
and you get the behaviorism of Ivan
Pavlov, John Watson, and B. F. Skinner.
Replace the ideas with "neurons" and the
associations with "connections," and you
get the neural network models of D. O.
Hebb and the school of cognitive science
called connectionism.

The theories would not have survived
for centuries if they did not account for
important phenomena. Associationism
captures the tendency of animals to pick up
statistical patterns among events and
generalize them to similar events.
Examples range from the gradient of bar-
pressing rates in rats when the surrounding
stimuli vary from training conditions to the
widely reported demonstration in these
pages last year that eight-month-old infants
pick up the probabilities of transition
between syllables in streams of artificial
speech (3).

Moreover, it's easy to see how the
laws of association might be implemented
in neural hardware. If, as many
neuroscientists believe, neurons that fire
together wire together, we have an
implementation of Hume's principle of
contiguity in time. If neurons represent
simple properties, and sets of active
neurons represent concepts, then concepts
that are similar will literally overlap in
neural real estate, and anything associated
with one concept will automatically be

associated with similar concepts. The
connectionists Geoffery Hinton, David
Rumelhart, and James McClelland, echoing
Hume's remark about resemblance, wrote,
"If ... you learn that chimpanzees like
onions you will probably raise your
estimate of the probability that gorillas like
onions. In a network that uses distributed

representations, this kind of
generalization is automatic"
(4).

The theory of symbol
processing seems better suited
to explaining the brain's
ability to handle complex
ideas and the aspects of
language that communicate
them. People are not slaves to
similarity. We can be told that
a whale is not a fish and that
Tina Turner is a grandmother,
overriding our statistical
experience of what fish and

grandmothers tend to look like. This
suggests an ability to summarize an entire
category by a mental variable or symbol,
whose meaning comes from the rules it
enters into: "a mammal is an animal that
suckles," "a grandmother is the mother of a
parent." These rules support generalizations
that work more like deductions than
similarity gradients. For example, we can
infer that whales have livers or that Ms.
Turner has had at least one baby (5).

Language is the quintessential
symbol-manipulating system. When we
learn that the grammatical object comes
after the verb from simple sentences like
"Tex hugged the dog," we can generalize
that regularity to grammatical objects that
are very different in sound ("I like Joe
Bftsplk"), in meaning ("Kant defined the
categorical imperative"), or in length
("Sheila met a tall blonde man with one
brown shoe"). The abstractness and open-
ended expressive power of human language
comes from a system of recursive rules
manipulating variables like "noun phrase"
and "object" (6).

Although many cognitive scientists
believe that the human mind is a hybrid
system that uses both associations and rules
(5), others want to retain associative
networks as the fundamental stuff of
cognition (4). They suggest that humans are
not naturally good at the kind of reasoning
subserved by rules. Rule use emerges late
in life as a result of formal schooling and
socially articulated rules, or as a result of
extensive training that makes an associative
network approximate rule-like behavior.
Marcus et al. (1) have now shown that
infants as young as seven months can
abstract simple rules from language-like
sounds, suggesting that rule formation is
not a late add-on but there from the start.

PERSPECTIVES: COGNITION
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Children of that age are just beginning to
segment words from ambient speech,
although they are several months away
from understanding or producing them (6).
Marcus et al. used a common method in the
study of infant cognition: present a
stimulus repeatedly until the infants are
bored, then present them either with stimuli
of the same kind or of a different kind.
"Same kind" and "different kind" are in the
mind of the beholder, so if infants attend
longer to the different kind, they must be
telling them apart.

In these experiments, infants were
habituated with "sentences" that follow one
sequence, such as "ga ti ga" and "li na li"
(an ABA pattern), and then were presented
with sentences that contained different
words and either the same sequence, such
as "wo fe wo" (ABA), or a different
sequence, such as "wo fe fe" (ABB). The
babies listened longer to the "different"
sequence, showing that they must have
discriminated ABA from ABB; everything
else about the test sentences, such as the
actual syllables and their transition
probabilities, was the same. Various
controls ensured that the children did not
simply like the sound of some sequences
more than others, or memorize smaller
chunks like BA. Marcus has also
demonstrated that a kind of associative
network frequently touted as a ruleless
model of language learning, J. Elman's
Simple Recurrent Network, does not
discriminate the patterns in the way these
infants do.

Marcus et al. (1) are careful not to
claim that infants lack an ability to form
associations, that rule learning is uniquely
human, or that the rule-learning mechanism
at work in this experiment is the same one
that babies use to acquire language later.
But their demonstration suggests that the
ability to recognize abstract patterns of
stimuli that cut across their sensory content
is a basic ability of the human mind. How it
is carried out in the brain is still largely a
mystery. Research in the neurobiology of
learning and in neural network modeling
(perhaps searching where the light is best)
has tended to focus on simple associative
learning mechanisms whose functions
would have been recognizable to
associationist philosophers writing
centuries ago. Marcus et al.'s experiment is
a reminder that humans also think in
abstractions, rules, and variables, and is a
challenge to figure out how we do so.
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