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ing, because it tells us something about
what they bring to learning situations
at a relatively early age. Indeed, it
seems very possible to us that seven-
month-old infants possess mechanisms
that provide powerful support for gen-
eralization. But we don’t really see
how experiments of this general sort
can tell us whether they use rules per
se; the powerful mechanisms might
simply be ones that help statistical
learning procedures generalize in pow-
erful ways. Furthermore, these mecha-
nisms might themselves be learned.

The case for rules
Marcus et al. based their argument on
the findings of three experiments. We
will focus on the third experiment, as it
provided the strongest test of the au-
thors’ hypothesis. During the training
phase of the experiment, each infant
was exposed to several examples of se-
quences of three syllables conforming
to a simple general pattern: either AAB
or ABB. That is, half of the infants
heard a series of sequences like ‘de-de-
li’, ‘wi-wi-di’, etc., while the other half
heard sequences like ‘de-li-li’, ‘wi-di-
di’, etc. In the subsequent test phase,
the infants’ listening preferences were
evaluated for both AAB and ABB se-
quences. Importantly, the test se-
quences were composed of new sylla-
bles that had not been presented
during the training phase (e.g. ‘ba-ba-
po’). Moreover, to preclude statistical
learning at the phonetic feature level,
the new sequences varied only in pho-
netic features (e.g. consonant voicing)
that had been held constant across
training sequences; the training phase
would thus provide no basis for prefer-
ring any sequence of test syllables over
another. Marcus et al. found that, de-
spite the fact that both AAB and ABB
test sequences contained repetition
and that variation in phonetic features
during training was uninformative at
test, infants nonetheless tended to lis-
ten less to test sequences that obeyed
the pattern to which they had been
previously exposed. Based on these re-
sults, the authors rejected several vari-
eties of ‘statistical learning mecha-
nisms’ and instead suggested:

We propose that a system that
could account for our results is one
in which infants extract abstract 
algebra-like rules that represent 
relationships between placeholders
(variables) such as ‘the first item X is
the same as the third item Y’ or
more generally that ‘item I is the
same as item J’. (Ref. 2, p. 79.)

Why the case is not convincing
We certainly agree that a system that
extracts abstract algebra-like rules
could account for the results. On the
other hand, it might be preferable to
avoid postulating a separate rule-
learning system if statistical learning
mechanisms, which everyone seems to
agree are involved in early language
acquisition, could be shown to be suffi-
cient. In evaluating this possibility, it is
important to be clear on a key point
that is often misunderstood in discus-
sions of what statistical learning mecha-
nisms can and cannot use as a basis for
generalization. In making this point,
we will focus on neural networks as
one form of such a mechanism, al-
though we believe our comments
apply to a much broader class of statis-
tical approaches.

The point we wish to make relates
to the fact that generalization in
neural networks depends on overlap of
representations – that is, the patterns
of activity used in the network – to rep-
resent items experienced during train-
ing and test. For prior learning to 
generalize to a new stimulus, the rep-
resentation of the new stimulus must
overlap with – that is, activate some
units in common with – the represen-
tation of the stimuli on which learning
is based. This is because learning occurs
by the adjustment of connection
weights between specific units in a net-
work, and so a new input must activate
some of the same units whose weights
were influenced by prior experience to
benefit from that experience.

We can now turn to our key point,
which is that the characteristic of
neural networks just described has
been misconstrued as implying that the
relevant overlap must be present in the
input itself. For example, Putnam claims:
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Does generalization in
infant learning implicate
abstract algebra-like
rules?
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Two recent papers1,2 suggest that in-
fants well under a year old can learn
from exposure to relatively short sam-
ples of language-like sequences of syl-
lables. The first of these two papers, by
Saffran and colleagues1, suggested
that infants were sensitive to the statis-
tical structure of syllable sequences
that they heard, in that they tended to
listen longer to syllable sequences that
were less common in their brief experi-
ence. An interesting exchange of com-
mentaries ensued2, centering mostly
on the issue of whether it is surprising
that infants are sensitive to the statisti-
cal structure of experience. No one has
admitted to being surprised; what the
debate has been about is whether
there are any theoretical positions
under which anyone should have been
surprised. We think enough has been
said about that.

The findings reported in the sec-
ond of these papers, by Marcus and
colleagues3, have raised a rather differ-
ent debate, this one centering on
whether or not infants learn some-
thing over and above the statistical
structure of the language-like se-
quences that they hear. Specifically,
the authors found that, following ex-
posure to syllable sequences obeying a
particular pattern, seven-month-old in-
fants tended to listen longer to syllable
sequences that violated the pattern,
even when the new sequences were
composed of novel syllables. The au-
thors suggest that their findings can-
not be accounted for by any learning
method that relies on statistical infor-
mation. Rather, they claim, the results
implicate the learning and use of ab-
stract ‘algebra-like’ rules.

Before we review the findings in
more detail, we will lay our cards on
the table: We don’t think the findings
of Marcus and colleagues really cut any
ice at all regarding the possible exist-
ence of abstract rule learning in in-
fants. We will support this position by
describing several ways in which the
data might be seen as compatible with
the extraction of statistical information
rather than abstract rules. We do think
the question of the extent of infants’
generalization ability is very interest-
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… what [the connectionist] algo-
rithm does is find correlations be-
tween sets of variables that it is
given. Things that cannot be ex-
pressed in terms of correlations be-
tween given variables cannot be
found by the algorithm. That is how
Steven Pinker [Ref. 5] at MIT was
able to show that you cannot claim
that neural nets learn the past
tense in English. In principle, they
cannot, because there are features
in the past tense for example, the
division of verbs into classes that
form their past tense differently
that cannot be expressed simply 
as correlations between variables
given to the machine as input. 
(Ref. 4, p. 185.)

As this quotation suggests, this
idea that generalization in neural net-
works must depend on given variables
may have played into several authors’
rejection of neural network models. If
so, the rejection might have been 
premature, as it neglects the following
crucial fact:

The relevant overlap of represen-
tations required for generalization in a
neural network or other statistical
learning procedure need not be pres-
ent directly in the ‘raw input’ but can
arise over internal representations that
are subject to learning.

It is important to remember that
infants are constantly bombarded by
auditory and linguistic information
that might contribute to the formation
of such representations, and indeed
many models have been developed in
which learning through adjustment of
connection weights accounts for the
formation of a variety of aspects of
brain representations, including recep-
tive field properties of neurons in vis-
ual cortex and the organization of
topographic maps6–10.

Alternatives to using rules for
generalization
With this background, we submit 
that a range of different proposals
might be made about what sorts of
map-pings from raw input might give
rise to representational overlap that
would support generalization of the
kind observed in the Marcus et al.
experiments.

The first possibility is perhaps the
least interesting: that both the training
and test stimuli vary along one or more
acoustic dimensions that are not cap-
tured by the phonetic features that
Marcus et al. considered. Marcus and
colleagues were correct to realize that
the argument for abstract rules would
be undermined if there were dimen-
sions of variation among syllables in
the training sequences that also varied
among the test stimuli, because then
the results could be due to simple dis-
tributional learning along these di-
mensions. The problem is that, even if
one assumes that seven-month-old in-
fants have a level of representation

corresponding to the specific phonetic
feature set envisioned by the experi-
menters (and this is a big ‘if’), there is
no compelling reason to think that this
would be the only level of represen-
tation that could influence the infants’
listening preferences. For example,
suppose that, as seems likely, the train-
ing syllables and the test syllables both
vary along an acoustic dimension like
loudness. If so, an AAB sequence in both
the training and test phases might be
loud–soft–soft or soft–loud–loud, and
simple statistical learning would be
sufficient to pick up on repetition
along this dimension. Loudness is, of
course, just one possibility; other pos-
sibly relevant acoustic dimensions in-
clude the frequencies, amplitudes, and
transition rates of various formants in
the consonants or vowels contained in
the syllables used. In essence, this first
proposal amounts to a suggestion that
representational overlap rather close
to the ‘raw input’ might be sufficient
to account for the generalization
demonstrated in the Marcus et al. ex-
periments. We simply don’t know
whether this is a viable possibility 
since the authors report no attempts 
to assess or control for any acoustic
properties of their stimuli.

The remaining possibilities we will
consider are more interesting in that
they accept, to different degrees and
in different ways, that the perfor-
mance of the infants at test is based on
some form of abstraction. Where they
differ from the account offered by
Marcus and colleagues is that the
process of abstraction reflects a recod-
ing of the input, which then makes ab-
stract information available for further
computations (of whatever form). If
the uninteresting possibility discussed
above can be ruled out, we think the
evidence is interesting in suggesting
that infants are capable of some form
of abstraction; but we would suggest
that the data do not cut either way
with respect to whether the learning
that applies to these abstractions in-
volves statistical computations or rule
induction.

Perhaps the simplest form of ab-
straction would be a case in which rep-
resentational overlap is not present in
the input but is introduced by the ap-
plication of some form of normaliz-
ation or relative encoding. Pursuing
the loudness example further, it might
be the case that the loudness in the
training stimuli varies in a different
range from the loudness in the test
stimuli. If different values of loudness
were represented by different units in
a network, there might be no overlap.
However, if loudness is encoded rela-
tive to other adjacent stimuli (and we
know such relative coding is used for
brightness and many other visual qual-
ities) then patterns such as ‘very
loud–loud–loud’ for a training se-
quence, and ‘medium–soft–soft’ for a
test sequence, would both map onto
the same values: louder–softer–softer.

Given a normalization process operat-
ing over stimuli, any movement of the
relative value of any auditory dimen-
sion becomes a potential basis for 
generalization from the training to 
the test stimuli in the Marcus et al.
experiments.

Another possibility, involving a
stronger form of abstraction, would be
if the infant’s perceptual system en-
coded whether a perceptual input is
the same or different from other items
in the immediate context. (Indeed, the
application of the preferential-looking
method to test infants’ discrimination
abilities is predicated on sensitivity 
to repetition/novelty.) Based on the
quote printed above, Marcus and col-
leagues appear to assume that infants
encode instances of sameness among
all combinations of positions within a
string of syllables. Without such infor-
mation, it is unclear how infants might
discover the rules attributed to them. If
sameness is assumed to be available as
input to a rule-learning mechanism, we
see no reason why it should not also be
available to the statistical learning
mechanism. In this case (considering
only the last two syllables), AAB pat-
terns end with same–different whereas
ABB patterns end with different–same,
and statistical learning would again be
sufficient for generalizing from train-
ing to test sequences. In fact, in a re-
sponse to the Marcus et al. article,
Seidenberg and Elman11 refer to a
neural network simulation that
learned to detect patterns of repeti-
tion within syllable strings in a way
that allowed later learning to general-
ize to sequences composed of novel
syllables constructed to be analogous
to the Marcus et al. stimuli. One may
quibble with the particulars of the re-
ported simulation, but the general
point remains that an encoding of
sameness versus difference may be
available as a basis for various forms of
learning (statistical or otherwise) in
seven-month-old infants.

The final possibility we will con-
sider is the suggestion, arising from the
work of Dienes, Altmann and Gao12,
that learning during the test phase
contributes to inducing overlap in the
internal representations for the test
and training sequences, even if there is
no overlap in their input represen-
tations. This can arise through learning
to map the test syllables onto the same
internal units that encode the el-
ements of the trained sequences. In
these studies, the network is trained
simply to predict each upcoming sylla-
ble within sequences, without regard
to what pattern the sequence obeys.
Dienes and colleagues have used this
method successfully to account for
transfer of knowledge of sequential
structure based on one set of elements
to an entirely new set of elements. A
forthcoming paper13 demonstrates
clearly that transfer of such knowledge
without any input overlap is quite
possible, without the use of abstract,
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algebraic rules. In their simulations (as
in the Marcus et al. experiment) only
half the test sequences have the same
structure as the sequences used in
training. Nonetheless, the learning
process quickly induces similarity
among the novel and familiar syllables.
As a result, sequences made from the
new elements cannot help but tap into
the knowledge the system has built up
about the sequential structure present
in the trained sequences, thereby pro-
ducing generalization.

In summary, we have described a
number of possible ways in which the
type of generalization exhibited by in-
fants in the Marcus et al. experiments
might arise, not from abstract rules,
but from the operation of statistical
learning mechanisms whose existence
is uncontested. We do not claim that
one of these possibilities is necessarily
correct; our goal has simply been to
point out that there are several alter-
natives to abstract, algebraic rules, and
that the results do not implicate such
rules because they provide no differen-
tial support for abstract rules relative
to the other alternatives.

Conclusion
Generalization of knowledge from
given examples to new cases is crucial
for intelligent behavior; as Marr14

pointed out, experience never repeats
itself, and so our reactions to every ex-
perience depend to some degree on
generalization. Marcus and his collabo-
rators are right to emphasize the im-
portance of generalization, and the ex-
periments they have reported likely
reflect the existence of impressive
powers of generalization in infants.
We have suggested, however, that
some participants in the debate about

the need for rules may have underesti-
mated the potential of alternative
forms of computation to address the
problem of generalization by mistak-
enly assuming that statistical learning
procedures, including neural networks,
are doomed to compute statistics only
over ‘given variables’4. In fact neural
networks make extensive use of inter-
nal representations, onto which the
given variables (i.e. the raw input) are
mapped. What sets some of the most
interesting types of statistical learning
procedures often used with neural net-
works apart from older (and for some,
more familiar) statistical procedures is
the fact that the network procedures
can learn what internal represen-
tations ought to be assigned to the
given variables. It seems likely to us
that infants are born with predispos-
itions to encode inputs in particular
ways and with powerful statistical
learning procedures like those cur-
rently used in network models that can
help them refine their initial predispos-
itions and discover new ones. As far as
we can tell, there is no evidence to 
suggest that such procedures are in-
sufficient to account for the sort of
generalization seen in the Marcus et al.
experiments.
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Connectionism: 
with or without rules?
Response to J.L. McClelland and D.C. Plaut
(1999)

Gary F. Marcus

It is not altogether surprising that
McClelland and Plaut, researchers with
longstanding interests in providing al-
ternatives to rules, find our recent ex-
periments unconvincing [McClelland,
J.L and Plaut, D.C. (1999) Does general-
ization in infant learning implicate 
abstract algebra-like rules? Trends
Cognit. Sci. 3, 166–168]1. But advocates
of their cognition-without-rules view
might want to look elsewhere to bol-
ster their case, as none of McClelland
and Plaut’s objections turns out to be
plausible. 

Before addressing their objections,
let me outline what I see as three im-

to represent items experienced
during training and test. For prior
learning to generalize to a new
stimulus, the representation of
the new stimulus must overlap
with – that is, activate some units
in common with – the represen-
tation of the stimuli on which
learning is based. This is because
learning occurs by the adjustment
of connection weights between
specific units in a network, and so
a new input must activate some of
the same units whose weights
were influenced by prior experi-
ence to benefit from that experi-
ence. (Ref. 1, p. 166.)

As it turns out, I made almost ex-
actly this point in a recent article2.
Where we seem to disagree is with the
implications of this fact about overlap.
The problem, as I see it, is that this 
inability to generalize to non-overlap-
ping items renders a certain class of
network models inappropriate for
many cognitive tasks, because in many
cognitive tasks we are required to 
generalize to new items that do not

portant points of agreement. First, we
all seem to be interested in the study of
how cognition could be realized in a
neural substrate. Second, we all believe
that the study of neural networks can
be helpful in this regard.

Third, we agree that a basic prop-
erty of the class of models that
McClelland and Plaut advocate is that
they depend on the overlap of fea-
tures. As they put it:

generalization in neural net-
works depends on overlap of rep-
resentations – that is, the patterns
of activity used in the network –
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overlap with the items that we have
seen before. 

The experiments in our Science
article3, discussed by McClelland and
Plaut, were designed to address pre-
cisely this point, testing whether in-
fants could generalize an abstract re-
lation, such as the one found in ‘ABA’
grammar consisting of sentences such
as ‘li-ti-li’ and ‘ga-ti-ga’, to novel items
that didn’t overlap with previous
items. Infants were able to do this, dis-
criminating consistent test sentences
like ‘wo-fe-wo’ from inconsistent test
sentences like ‘wo-fe-fe’. If words are
represented as independent items, as
they are in, say, Elman’s work on the
popular simple recurrent network4, the
test items do not overlap with the ha-
bituation items, thus the standard ver-
sion of the simple recurrent network
does not succeed in making the dis-
crimination. This is exactly as would be
expected, given McClelland and Plaut’s
discussion about the importance of
overlap. (This is an entirely replicable
result, using a wide range of network
parameters. Readers who wish to verify
this for themselves can look at the sam-
ple files we provide at http://www.
psych.nyu.edu/~gary/es.html.)

Furthermore, our experiments
were designed in such a way that even
if the input were encoded as sets of
phonetic features a standard simple re-
current network would still be unable
to discriminate the consistent and in-
consistent test stimuli. Again this fol-
lows because the relevant features that
would discriminate consistent from in-
consistent test items did not overlap
with what the model would have
learned about in the habituation.

Of course, what counts as ‘overlap-
ping’ depends on how inputs are en-
coded. The words cat and dog would
presumably overlap if they were rep-
resented as sets of semantic features,
but not if they were represented in 
terms of their orthographic (i.e. spelling)
features.

Auditory contours: an alternative
account?
It is in this context that McClelland and
Plaut point out, quite rightly, that in-
fants could encode our stimuli in other
ways, for example, in terms of sound
contours like ‘+loud, –loud, +loud’. If it
were the case that the test items over-
lapped in terms of those sound con-
tours, infants could (in principle) suc-
ceed using a standard simple recurrent
network that used those features as 
inputs (although one could quibble
about whether the model could do so
fast enough, etc.). Of course, this alter-
native would only work if the relevant
sound contours are available in our
data, and if the child encodes the lin-
guistic-like stimuli using those contour
features. But McClelland and Plaut did
not actually test our materials to see if
these contours were present. As it
turns out, the relevant differences (be-
tween bo and po and between ko and

ga) appear to be less than one decibel,
and hence unlikely to be discernible.

In any event, even if the differ-
ences were somewhat larger, we doubt
that a child would use them. Words
vary in their loudness and pitch all the
time, but for the most part we seem to
filter out that variability: no language
learner should treat the word cat dif-
ferently depending on whether it is
spoken at 62 decibels or 63. Likewise,
excepting tonal languages, we would
not expect a language learner to treat
words differently depending on slight
variations in pitch.

Still, on the maxim that it is more
convincing to counter argument with
data than with further argument, we
have collected preliminary data from
six infants in a follow-up experiment.
In this experiment, infants were again
trained on either AAB or ABB sen-
tences, but we changed the second
word of each test sentence such that it
was noticeably different in loudness
(by about 2.5 db) and pitch from the
first and third words. If infants were 
relying on the sound contours, the ef-
fects in our original experiments would
disappear in this version. Instead, the
results appear to be unchanged: five of
our six subjects looked longer at the
syntactically inconsistent test items
than at the syntactically consistent
items, in line with what we found in
our earlier work. This is exactly as it
should be, for what matters in lan-
guage (tonal languages and stress
aside) is not how loudly somebody says
something, nor the fundamental fre-
quency of their voice, but rather what
words they are saying and what the 
relationship is between those words. 

Statistics
Elsewhere McClelland and Plaut ap-
pear to broaden the notion of statistics
from things like transitional probabil-
ities between particular elements to
any kind of relation between any kind
of information, concrete or abstract.
The trouble is that this broader notion
of statistics trivializes the very term,
rendering it broad enough to encom-
pass any lawful relationship, including
for example, the very rules that
McClelland and Plaut argue against.
For example, by the definition of statis-
tics that McClelland and Plaut implicitly
adopt, if a language produced sen-
tences only of the type noun-phrase
followed by verb-phrase, one could 
describe the language in terms of a
phrase-structure rule [Sentence→Noun-
Phrase, Verb-Phrase], but also in terms
of a statistical pattern in which verb
phrases follow noun phrases one hun-
dred percent of the time. We did not
mean to deny that children could make
use of statistics in this broader, prob-
ably unfalsifiable sense; our intent was
only to argue against the narrower 
definition of statistics. Our criticism of
models that rely purely on transitional
probabilities between words still holds,
and we do not see a proposal for a kind

of statistical reasoning that would suc-
ceed in our task without (perhaps
covertly) encompassing rules.

It is also, of course, fine to have
some external device compute whether
any two items are the same, and then
compute the statistical likelihood that
that external same–different system
will say ‘yes’. But if that external system
itself implements a rule (e.g. a line of
computer code that says, for all sylla-
bles x, y, if x equals y execute condition
A, otherwise execute condition B), we
are still left with a system that incorpo-
rates a rule. Relocating a rule is not
tantamount to eliminating it.

Learning the learning mechanism
Another idea worth considering is
McClelland and Plaut’s suggestion that
the learning mechanism itself could be
learned: ‘...powerful mechanisms might
simply be ones that help statistical
learning procedures generalize in pow-
erful ways. Furthermore, these mecha-
nisms might themselves be learned.’
While we agree that it is a logical possi-
bility that some learning mechanisms
might themselves be learned, we note
that (1) no such proposal has actually
been made, and (2) there must be a so-
lution to the bootstrapping problem;
which is to say that on pain of infinite
regress, learning can only take place in
a system in which at least some learn-
ing mechanism is innate.

Models
In the remainder of their critique,
McClelland and Plaut focus on connec-
tionist models, attacking a claim that
we never made. We never intended to
deny that one could build a neural net-
work that could capture our data.
Rather we aimed ‘to try to characterize
what properties the right sort of neural
network architecture must have’. Here
and elsewhere the difference between
different kinds of neural network mod-
els has been obscured, as though all
networks were alike, and as if the suc-
cess of a given network model auto-
matically counted against the rule 
hypothesis. But networks are not in
fact all alike – some implement rules
(overtly or covertly), some do not. Our
work aimed to provide a mechanism
for choosing between different types
of models; as we shall see, the models
that work the best are those that 
implement, rather than eliminate,
rules.

Seidenberg and Elman
For example, consider the recent
model of Seidenberg and Elman men-
tioned by McClelland and Plaut. To
some extent this model can capture
our data  (McClelland and Plaut con-
cede that the model is not perfect,
writing that ‘one may quibble with the
particulars of the reported simu-
lation’). But this model turns out to de-
pend on a behind-the-curtain ‘teacher’
that itself incorporates a rule. (In this
case, the rule – that is, operation over
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variables that can be applied to any in-
stance – was probably implemented as
a line of computer code such as ‘if a = b
then output 1 else output 0’.)

In this respect, the Seidenberg and
Elman model is a significant departure
from Elman’s earlier work, abandoning
his commitment to ‘prediction tasks’.
As Elman himself noted5 the virtue of
the prediction task is that ‘One [issue]
which arises with supervised learning
algorithms such as backpropagation of
error is the question of where the
teaching information comes from. In
many cases, there are plausible ration-
ales which justify the teacher. But the
teacher also reflects important theo-
retical biases which one might some-
times like to avoid’ whereas ‘the pre-
diction task... represents information
which is directly observable from the
environment.’ In contrast, the
Seidenberg and Elman model depends
on an internal teacher that must do
some computation on the information
provided in the environment. There is
nothing wrong with such a deus ex
machina but it is crucial to realize that
the deus ex machina, which itself de-
pends on a rule, must be taken as part
of the system as a whole, and to realize
that without that rule, the whole sys-
tem breaks down. As I have written
elsewhere in a reply to Seidenberg and
Elman, they ‘have not eliminated the
rule, they have simply hidden it’6.

Dienes and Altmann
Finally, let us turn to the model by
Dienes, Altmann and Gao7 that
McClelland and Plaut advocate. Unlike
the Seidenberg and Elman model,
Dienes and Altmann’s architecture
does not include an external teacher
that builds in a sameness-detecting
rule. Instead, the Dienes et al. model
instantiates a different hypothesis
about transfer, one in which words in a
second vocabulary are mapped onto
words in a first vocabulary. McClelland
and Plaut speculate that this model
might be able to capture our data.

We have not yet had time to ana-
lyze fully whether this model can in
fact capture our data, but in our pre-
liminary experiments with the model
we have found the following: if the

model is trained on our habituation
sentences (e.g. ‘la-ta-la’ and the like)
and then tested on many consistent
test sentences with a new vocabulary,
such as ‘wo-fe-wo’, and then subse-
quently tested on ‘fe-wo-wo’ versus
‘fe-wo-fe’, the model is more ‘sur-
prised’ to hear ‘fe-wo-fe’ (consistent)
than ‘fe-wo-wo’ (inconsistent). We sus-
pect that this is a consequence of map-
ping the second vocabulary onto the
first, but we doubt that children would
do the same, and plan to test this pre-
diction of the model.

Discussion
None of this is to say that you cannot
build a connectionist model that can
capture our results. The property of
generalizing only to overlapping items
is not intrinsic to neural networks; it is
possible to build neural networks that
do not have that property. As we
noted in our article, Holyoak and
Hummel8,9 had already done so, build-
ing a model that captures a task that is
equivalent to ours; Shastri and Chang
(pers. commun. and Refs 10,11) have
now done so as well. But these authors
embrace rules rather than scorning
them, implementing explicit variables
and abstract relationships between
variables. From the perspective of com-
paring a broad range of possible mod-
els, it is unfortunate that McClelland
and Plaut do not even address the kinds
of model that Holyoak and Hummel
and Shastri and Chang advocate.

McClelland and Plaut worry that
they ‘don’t really see how experiments’
like ours can tell us ‘whether [infants]
use rules’ – without suggesting any al-
ternative. We find such a view to be
unduly pessimistic, casting questions
about models as unanswerable. While
we acknowledge the fact that it is im-
possible to test the broad framework
of connectionism – which encompasses
both systems that use rules and those
that do not – it is possible to use empiri-
cal data to choose between classes of
models, and we believe that our experi-
ments do so. Our data are not readily
captured by models that do not incor-
porate rules (such as the original ver-
sion of the Simple Recurrent Network)
but work by Holyoak and Hummel, and

Shastri and Chang, has shown that our
results can be captured in a variety of
models, including connectionist mod-
els that do incorporate rules.

Acknowledgement

We thank Zsofia Zvolensky for a suggestion that

led to the ‘fe-wo-fe’ test of the Dienes et al.

model.

References

1 McClelland, J.L. and Plaut, D.C. (1999) Does

generalization in infant learning implicate

abstract algebra-like rules? Trends Cognit. Sci.

3, 166–168

2 Marcus, G.F. (1998) Rethinking eliminative

connectionism Cognit. Psychol. 37, 243–282

3 Marcus, G.F. et al. (1999). Rule learning in 7-

month-old infants Science 283, 77–80

4 Elman, J.L. (1990) Finding structure in time

Cognit. Sci. 14, 179–211

5 Elman, J.L. (1995) Language as a dynamical

system, in Mind as Motion: Explorations in

the Dynamics of Cognition (Port, R.F. and van

Gelder, T., eds), pp. 195–223, MIT Press

6 Marcus, G.F. Reply Science (in press)

7 Dienes, Z.D., Altmann, G.T.M. and Gao, S-J.

(1995) Mapping across domains without

feedback: a neural network model of transfer

of implicit knowledge, in Neural Computation

and Psychology (Smith, L.S. and Hancock,

P.J.B., eds), pp.19–33, Springer-Verlag

8 Hummel, J.E. and Holyoak, K.J. (1997)

Distributed representations of structure: a

theory of analogical access and mapping

Psychol. Rev. 104, 427–466

9 Holyoak, K.J. and Hummel, J.E. The proper

treatment of symbols in a connectionist

architecture, in Cognitive dynamics:

Conceptual change in humans and machines

(Deitrich, E. and Markman, A. eds), Erlbaum

(in press)

10 Shastri, L. and Ajjanagadde, V. (1993). From

simple associations to systematic reasoning: A

connectionist representation of rules, variables,

and dynamic bindings using temporal

synchrony. Behav. Brain Sci. 16, 417–494

11 Shastri, L. (1997) Exploiting Temporal 

Binding to Learn Relational Rules Within 

a Connectionist Network (TR-97-003),

International Computer Science Institute,

University of California, Berkeley

M a r c u s  –  R e s p o n s e

Coming soon to Trends in Cognitive Sciences
• Autism: cognitive deficit or cognitive style?, by F. Happé

• Models of word production, by W.J.M. Levelt 

• Spatial and temporal limits in cognitive neuroimaging with fMRI, by R.S. Menon and S-G. Kim

• Is imitation learning the route to humanoid robots?, by S. Schaal

• Possible stages in the evolution of language, by R. Jackendoff


