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In the novel noun generalization task, 2 1/2-year-old children display generalized expectations about how
solid and nonsolid things are named, extending names for never-before-encountered solids by shape and
for never-before-encountered nonsolids by material. This distinction between solids and nonsolids has
been interpreted in terms of an ontological distinction between objects and substances. Nine simulations
and behavioral experiments tested the hypothesis that these expectations arise from the correlations
characterizing early learned noun categories. In the simulation studies, connectionist networks were
trained on noun vocabularies modeled after those of children. These networks formed generalized
expectations about solids and nonsolids that match children’s performances in the novel noun general-
ization task in the very different languages of English and Japanese. The simulations also generate new
predictions supported by new experiments with children. Implications are discussed in terms of children’s
development of distinctions between kinds of categories and in terms of the nature of this knowledge.

Concepts are hypothetical constructs, theoretical devices hy-
pothesized to explain data, what people do, and what people say.
The question of whether a particular theory can explain children’s
concepts is therefore semantically strange because strictly speak-
ing this question asks about an explanation of an explanation. We
begin with this reminder because the goal of the research reported
here is to understand the role of associative processes in children’s
systematic attention to the shape of solid things and to the material
of nonsolid things in the task of forming new lexical categories.
These attentional biases have been interpreted in terms of chil-
dren’s concepts about the ontological kinds ofobject and sub-
stance(e.g., Dickinson, 1988; Imai & Gentner, 1997; Soja, Carey,
& Spelke, 1992; Subrahmanyam, Landau, & Gelman, 1999).
These concepts and the notion of a psychological ontology are
theoretical constructs offered within the framework that posits
propositional representations.

In the simulations and experiments reported here, we show how
abstract distinctions about different kinds of categories may be
made through associative learning and the patterns of correlations
between the perceptual properties of things and words. The theo-
retical explanation we offer and the experiments we report do not

explain the hypothetical constructs of object and substance nor do
they fully replace these constructs by explaining all of the data that
have been subsumed under them. Nonetheless, the results do show
how simple associative processes may create abstract distinctions
about different kinds and, in so doing, these processes may play a
crucial role in children’s category and lexical learning.

The Hypothesis

There is no doubt that associative mechanisms are part of
children’s psychology; however, there is considerable debate about
the role of these processes in early lexical learning, with most of
the discussion centered on whether associative processes are suf-
ficient to explain all of children’s progress in this domain (e.g.,
Bloom, 2000; Golinkoff et al., 2000; Hollich et al., 2000; Jones,
Smith, & Landau, 1991). It seems highly unlikely that associative
learning can explain it all, but it also seems highly likely that these
general learning processes make important contributions to chil-
dren’s developing knowledge about lexical categories.

One particular strength of associative learning is pattern match-
ing, that is, internalizing the structure of the learning environment.
This is sometimes seen as a limitation, with the criticism being that
associative mechanisms output pretty much what is put in (e.g.,
Keil, 1994). This limitation, however, may be a strength in the
larger context of development. Developmental change occurs over
a series of encounters with the environment. What one takes from
each of these encounters depends on what one already knows. By
internalizing the regularities across previous encounters, associa-
tive learning may create expectations that guide and constrain
future learning. In this way, associative learning may be a power-
ful bootstrap on learning itself.

One way these internalized regularities may guide future learn-
ing is by influencing attention. In laboratory learning experiments,
it has been shown that properties that systematically co-occur in
the learning environment direct attention to each other (e.g., Mur-
phy & Wisniewski, 1989; Wattenmaker, 1991, 1993). A second
way that associative learning may bootstrap more advanced learn-
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ing mechanisms is through the discovery of higher order general-
izations. In any reasonably complex environment, there are regu-
larities at several levels of abstraction (see McRae, de Sa, &
Seidenberg, 1997; Yoshida & Smith, 2003b). If an associative
learning device can discover the higher order regularities, then it
can form rulelike generalizations that transcend the specific prop-
erties of specific instances. These rulelike generalizations, in turn,
may characterize the nature of fundamentally different kinds.

We pursued these ideas by concentrating on children’s perfor-
mances in a widely used experimental task known as the novel
noun generalization task. The skills that 2 1/2-year-olds show in
this task are remarkable precisely because the task itself provides
so little information and support. In the typical experiment, a child
is shown a single object and told its name. From that information
alone, the child is asked to indicate the category to which the name
applies by extending the name to other things. Moreover, the
typical experiment uses stimuli that are novel made-up things
labeled with novel made-up names such that there is little infor-
mation about the category to be formed. Nonetheless, with just this
little to go on, 2- to 3-year-old children form categories for solids
and nonsolids differently. When they are shown a single novel
solid thing and told its name, 2- to 3-year-olds generalize that
name to things that match the original in shape. But when they are
shown a single novel nonsolid thing and told its name, same-age
children often extend the name to new instances that match in
material (Colunga & Smith, 2003; Imai & Gentner, 1997; Soja et
al., 1992).

Other research has shown that children can use a variety of
kinds of information to guide category formation—information
about function, about how the stimuli were made, and about roles
in complex events (e.g., Bloom, 1996; Booth & Waxman, 2002a,
2002b; Diesendruck, Markson, & Bloom, 2003; Gathercole, Cra-
mer, Somerville, & Haar, 1995; Gelman & Bloom, 2000; Kemler
Nelson, Frankenfield, Morris, & Blair, 2000). However, the evi-
dence from the novel noun generalization task shows that 2- to
3-year-old learners do not need this information; rather, quite
minimal stimulus cues about solidity appear to activate knowledge
about different kinds and do so in a way that generalizes to
never-before-encountered things.

Several additional facts about this phenomenon are also rele-
vant. First, what the experimenter says in the task critically deter-
mines children’s performance. Children adaptively shift their at-
tention to different properties for different kinds when the
experimenter names (e.g., Landau, Smith, & Jones, 1988) the
objects or uses language associated with talking about kinds (e.g.,
“another,” “same kind”; e.g., Diesendruck & Bloom, 2003). Chil-
dren do not systematically shift attention to different dimensions
when they are asked to group objects or to make similarity judg-
ments. This indicates that it is not the stimulus properties alone that
determine children’s attention to different properties. Rather, the
language that defines the task also matters. Second, children
younger than 2 years do not so clearly differentiate solids and
nonsolids, even in explicit naming tasks (Samuelson, 2002; Sam-
uelson & Smith, 1999). Moreover, the degree to which individual
children show these kind-specific shifts in attention appears to be
strongly related to the number of nouns known by that child, as if
children learn the predictive relation between solidity and category
structure as they learn early nouns (Samuelson, 2002; Samuelson

& Smith, 1999; Yoshida & Smith, in press). In this article, we
report evidence pertinent to this hypothesis.

We propose the following: First, the early noun lexicon presents
regularities between solidity, nonsolidity, and shape- versus
material-based categories. Second, through general processes of
associative learning, children internalize these regularities. Third,
these internalized regularities form a higher level distinction about
solids and nonsolids as different kinds. This last prediction, that
these associations create abstract knowledge about different kinds,
brings us close to the idea that children’s performance in this task
is related to their concepts of object and substance. We reserve
discussion of this issue to the General Discussion, concentrating
here and in the experiments on the data to be explained—chil-
dren’s attention to the shapes of solids and the materials of non-
solids in the novel noun generalization task.

Background

There is considerable evidence that the developmental roots of
these context-specific attentional shifts begin well before word
learning. Infants discriminate among perceptual cues associated
with solidity and nonsolidity (E. J. Gibson, Owsley, Walker, &
Megaw-Nyce, 1979; Mash, Quinn, Dobson, & Narter, 1998;
Spelke, Breinlinger, Macomber, & Jacobson, 1992). Moreover,
Huntley-Fenner, Carey, and Solimando (2002) showed that
8-month-old infants attend to the number of cohesive (typically
solid) things but do not attend to the number of noncohesive
(typically nonsolid) things. These results indicate that infants not
only are sensitive to the relevant perceptual cues for distinguishing
solids and nonsolids but also know something about their mean-
ingful correlations. Apparently, however, these early sensitivities
are not enough to drive kind-specific attention in the novel noun
generalization task because well-differentiated attentional biases
for solids and nonsolids emerge only well after children have
learned some names for solid and nonsolid things (e.g., Samuelson
& Smith, 1999). This last fact raises the possibility that the
different attentional biases for solids and nonsolids that are typi-
cally shown by 2- to 3-year-olds in the novel noun generalization
task are a consequence of linking early perceptual sensitivities to
words.

If this possibility is so, this developmental work also begins in
infancy. In one important study, Waxman and Markow (1995)
examined 12-month-old infants’ ability to form categories in a
familiarization paradigm. They presented infants with instances of
the categoryanimal (e.g., bear, duck, lion, and dog) during a
familiarization phase and with novel within-category or out-of-
category instances during the test phase (e.g., cat vs. apple). A
novelty preference for the out-of-category instance was interpreted
as evidence of categorization. The central result was that infants
showed this novelty preference only when the original instances
had been named during familiarization, a result that suggests that
naming directs attention to category-relevant properties.

In recent studies, Booth and Waxman (2003) suggested further
that by 14 months, children know something quite specific about
the linguistic cues in English that are associated with noun cate-
gories; they found that infants attend to object categories only
given a word presented as a novel count noun (e.g., “a dax”) but
not when presented as a novel adjective (e.g., “a daxy one”). These
results provide clear evidence of early learned links between
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linguistic cues and kind of lexical category. The knowledge shown
by infants in these tasks appears to be limited in two ways relative
to that of 2- to 3-year-olds. First, there is no evidence to date that
infants differentiate noun categories into different kinds for solids
and nonsolids. Second, the experimental demonstrations with in-
fants involve familiar categories and often presentations of multi-
ple instances of the category. This is in contrast to older children’s
attentional shifts that are evoked by the naming of a single novel
thing. Generalized expectations that differentiate different kinds
and apply broadly to unfamiliar things apparently develop later in
word learning.

Studies using the standard form of the novel noun generalization
task—naming a single novel thing with a novel name—with older
infants also have suggested progressive development toward more
abstract expectations about how nouns map to categories. One key
study is by Woodward, Markman, and Fitzsimmons (1994). They
presented 13- and 18-month-old infants with a novel object, a
strainer, and named it with a novel name (“this is a ____”). They
then tested the children’s learning in two comprehension tasks: one
in which the target object was identical to the original exemplar
and one in which the target object was from the same adult lexical
category (also a strainer) and highly similar overall to the exemplar
(different in color). In three out of four experiments, the 13-month-
olds systematically mapped the name to the identical object but not
to the merely highly similar object. The 18-month-olds, in contrast,
more consistently mapped the name to the identical object and to
the highly similar object. These results fit the idea that children do
not initially know the full range of instances that fall within noun
categories.

By 24 months of age, there is evidence of this sort of knowledge
for solid things but not so clearly for nonsolid things (e.g., Imai &
Gentner, 1997; Kobayashi, 1997; Landau et al., 1988; Samuelson
& Smith, 1999; Soja, Carey, & Spelke, 1991; Subrahmanyam et
al., 1999). Given a single novel solid exemplar and told its name,
2-year-olds reliably extend that name to instances that match in
shape, even when these shape-matching instances differ dramati-
cally from the exemplar in other properties (e.g., Samuelson &
Smith, 1999). The material bias for nonsolids is much weaker and
often not reliable at this age. In some studies 2-year-olds have been
reported to extend names for nonsolids by material (Soja, 1992;
Soja et al., 1991, 1992), but in others they have not, either
overgeneralizing the shape bias for solids to nonsolids (Samuelson,
2002; Samuelson & Smith, 1999; Subrahmanyam et al., 1999) or
responding at chance levels (Imai & Gentner, 1997). All in all, the
evidence indicates that children’s knowledge of the predictive
relation between solidity and category structure becomes stronger
between 2 and 3 years of age.

Other evidence indicates that children’s name extensions in
these tasks are influenced by syntactic cues, specifically those
concerning the noun’s status as count or mass (e.g., Dickinson,
1988; McPherson, 1991; Soja, 1992). In English, count nouns are
preceded bya or an and refer to discrete entities that can be
counted (e.g., “a cup” or “an airplane”), and mass nouns are often
preceded bysomeor muchand refer to continuous masses that
cannot be counted (e.g., “some water” or “much cheese”). Older
children (3- and 4-year-olds) typically name solids with count
nouns but often name nonsolids with mass nouns (see Gordon,
1988; Hall, 1994; Levy, 1988). In novel noun generalization tasks,
count-noun syntax increases attention to shape, and mass-noun

syntax increases attention to material, although these syntax effects
are stronger for nonsolids than solids and for older than younger
children (Soja, 1992; Subrahmanyam et al., 1999). Mass–count
syntax is a property of English but not a property of all languages.
These syntax effects thus raise the question of whether different
languages—by offering perhaps different patterns of correlations
with shape- and material-based categories—lead to different de-
velopmental outcomes.

Cross-linguistic studies have found both similarities and differ-
ences in children learning different languages, including languages
that differ in ways one may think should matter (Colunga & Smith,
2004; Gathercole, 1997; Imai & Gentner, 1997). For example, both
children learning English (which has mass–count syntax) and
children learning Japanese (which does not have mass–count
syntax) attend to the shapes of solids more than nonsolids in the
novel noun generalization task (Imai & Gentner, 1997). However,
there have also been reports of cross-linguistic differences. In one
study, Imai and Gentner found that whereas 2 1/2-year-old
English-speaking children generalized names for solids formed
into simple shapes by shape, same-age Japanese-speaking children
showed no clear preference, generalizing names for simply shaped
solids sometimes by material and sometimes by shape. Imai and
Gentner also found that the material bias for nonsolids appeared
earlier and was more robust for Japanese-speaking children than
for English-speaking children (see also Kobayashi, 1997; Samuel-
son & Smith, 2000). There is even evidence that language may
have long-term effects; adult speakers of Japanese and Yucatec
Mayan (a language with material-based nouns) are more likely to
attend to material than are adult speakers of English (Imai &
Gentner, 1997; Lucy & Gaskins, 2001).

To summarize, the developmental evidence suggests (a) an early
sensitivity to the properties that distinguish solids and nonsolids;
(b) an early sensitivity to words as indicators of categories; (c)
incremental progress toward increasingly generalized expectations
about how nouns map to differently structured categories for solids
and nonsolids, with knowledge about solids developing earlier
than knowledge about nonsolids; and (d) a possible role for lan-
guage learning in this developmental trend. In light of this evi-
dence, we propose that associative learning is the mechanism that
takes infants’ discriminations of solids and nonsolids, their sensi-
tivity to words, and their sensitivity to the structures of familiar
categories and transforms them into generalized expectations
about how even novel solid and nonsolid things are named. We
suggest further that learning names for specific solid and nonsolid
things is the critically relevant experience. In other words, our
proposal is that 2- to 3-year-old children’s performances in the
novel noun generalization task are the product of generalizations
over the regularities that characterize the nouns they already know.
By this account, children may not show well-differentiated cate-
gories of novel solids and nonsolids earlier because doing so
requires having already learned a noun corpus that reliably shows
these regularities.

Given this proposal, there are a number of testable predictions
that one might make. In what follows, we concentrate on predic-
tions that derive from two key ideas. First, the statistical regular-
ities that characterize the nouns that 2- and 3-year-old children
typically know should strongly predict these children’s category
formations in the novel noun generalization task. Second, the
mathematical function that predicts children’s performances from
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the statistical regularities in the early noun corpus should describe
well-accepted ideas about associative learning and generalization
by similarity.

Structure of the Lexicon

Samuelson and Smith (1999) reported evidence pertinent to
these predictions. They studied the regularities that characterize
the corpus of nouns on the Macarthur Communicative Develop-
mental Inventory (MCDI; Fenson et al., 1993). The MCDI is a
parent checklist of the early words and phrases commonly pro-
duced by 18- to 30-month-old children. The checklist was devel-
oped from extensive studies of parental diaries, in-laboratory test-
ing of early vocabularies, and large normative studies of the
instrument itself (Fenson et al., 1993). More specifically, the
words included on the MCDI are those known by 50% of children
at 30 months. Thus, the 312 nouns that are on the MCDI represent
a typical noun lexicon for 2- to 3-year-old children learning
English.

Samuelson and Smith (1999) examined the statistical regulari-
ties presented by the categories in this corpus through the use of a
method pioneered by Rosch (1973a, 1973b). Adults were pre-
sented with each noun in the corpus and asked to think of common
instances of the category. They were then asked a series of “yes/
no” questions about the instances named by the noun: Are these
similar in shape? Are these similar in color? Are these similar in
material? Are these solid? Are these nonsolid? A separate group of
adults was presented with criteria for distinguishing count and
mass nouns and asked to judge whether each noun on the MCDI
was a count noun, was a mass noun, or could be used in both
syntactic frames (e.g.,cake). From these adult judgments, each
lexical item was designated as shape-based, color-based, material-
based, based on none of these properties, or based on any combi-
nation of these properties. Each noun was also designated as
referring to solid or nonsolid things and as a count or mass noun.
Individual nouns were designated as having these properties if
85% of the adult judges agreed with the designation.

Figure 1 summarizes the key regularities in terms of Venn
diagrams. In these diagrams, the relative size of each circle rep-

resents the relative number of nouns of that kind, and the size of
the overlap between intersecting circles represents the relative
number of nouns of both kinds. The circles in the left panel depict
the relative numbers of count nouns, names for solid things, and
names for categories organized by shape. The circles in the right
panel represent the relative numbers of mass nouns, names for
nonsolid substances, and names for things in categories organized
by material. What Figure 1 shows is that many early nouns are
count nouns, many refer to solid objects, and many name objects
in shape-based categories. Moreover, count nouns, solid things,
and shape similarity go together, albeit imperfectly. The right
panel in Figure 1 shows that there are many fewer nouns in this
corpus that are mass nouns, name nonsolid things, and name
categories organized by material. Further, nonsolidity, mass-noun
syntax, and material-based categories seem to go together, again,
however, imperfectly. Figure 1 also shows that there are many
exceptions to these regularities.

Figure 1 could be interpreted as indicating that the early noun
lexicon presents the relevant regularities and thus is a potential
source for children’s expectations about how solid and nonsolid
things are named. Alternatively, if one focuses on the exceptions,
one might conclude that the relevant regularities are too weak to
account for children’s knowledge. One way to determine whether
the statistical properties of the early noun lexicon could possibly
create children’s generalized expectations is to present those reg-
ularities to an associative learning device and see just what is
learned. This was one of the main goals of the simulation studies
that follow.

There are, in addition to the regularities studied by Samuelson
and Smith (1999), properties of solid and nonsolid things that must
be taken into account in any attempt to model the correlations
presented by early noun categories. Most critical, solids and non-
solids differ in the kinds of shapes they can take. Solid things can
be a variety of shapes, from broken, irregular pieces to highly
constructed and multipart forms with right angles and parallel
sides. Nonsolid things, in contrast, can take a much more restricted
range of shapes—flatter, rounder, and less constructed. Moreover,
nonsolid things in the world of children—for example, oatmeal,

Figure 1. Regularities in the early English lexicon, presented as Venn diagrams. Size of area indicates the
number of words for categories of solid things (left) and nonsolid things (right). Reprinted fromCognition, 73,
L. Samuelson and L. B. Smith, “Early Noun Vocabularies: Do Ontology, Category Structure and Syntax
Correspond?” p. 11. Copyright 1999, with permission from Elsevier.
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juice, and applesauce—hold their shapes for at best very brief
periods of time and often transform into the accidental shapes of
splatters and spills. All of this is relevant because shapes with right
angles and parallel sides suggest a “designed” form whereas
shapes without these properties—for example, the splatter of oat-
meal on the floor—appear accidental (see Biederman, 1987;
Burger & Prasada 1997; Leyton, 1992; Prasada, Ferenz, &
Haskell, 2002). Further, Gelman and Bloom (2000) showed that
both adults and children use cues about whether shapes are de-
signed or not to make inferences about the relevance of shape to
object categories. Recall, also, that Imai and Gentner (1997) found
that shape complexity affected 2 1/2-year-old Japanese-speaking
children’s performances in the novel noun generalization task.
Thus, in addition to the lexical category regularities studied by
Samuelson and Smith, there are regularities generated by phys-
ics—solid things can hold highly complex shapes whereas non-
solid things cannot—and there is also evidence that these correla-
tions may matter to children. Accordingly, we took these
regularities into account in our simulations and provide evidence
for their importance in the experiments with children as well.

The Learning Problem

Could an associative learner given sensitivities to the shape,
material, and solidity and also given training on the nouns that
label these things induce generalized expectations about how solid
and nonsolid things are named? One possible limit on an affirma-
tive answer to this question is the strength of the regularities
themselves. They may be too noisy, characterized by too many
exceptions, to generate the kind-specific generalizations that 2- to
3-year-olds show. A second possible limit concerns associative
learning mechanisms and whether an associative learner—even
given near perfect correlations in the noun lexicon—could develop
attentional biases of the form showed by children. From an asso-
ciative learning perspective, children’s generalized and kind-
specific attentional biases must arise from learning specific asso-
ciations between individual words and individual instances, from,
for example, the pairing of a particular yellow ball with the word
ball and the pairing of the orange juice one is drinking from a
bottle with the wordjuice. But 2- to 3-year-olds’ expectations
about category structure are not expectations about specific things,
or even about specific categories such asball or juice. Rather, they
are higher order expectations about how different kinds of cate-
gories are organized.

Knowing to categorize novel solid things by shape and novel
nonsolid things by material requires the learner to make a second-
order generalization (Smith, Colunga, & Yoshida, 2003) or over-
hypothesis (Goodman, 1955/1983; Shipley, 1993, 2000) that tran-
scends particular objects, particular shapes, and particular
categories. The critical correlation is not between cues, such as
being solid and being chair-shaped, but between cues and category
organization, between being solid and being in a category that is
organized by shape—whatever that shape may be—and between
being nonsolid and being in a category organized by material—
whatever that material may be. Can these kinds of overhypotheses
emerge through general processes of associative learning, pro-
cesses that consist of the pairings between names and instances?
This is the key learning problem addressed in the simulation
studies that follow.

A second learning problem concerns the graded and context-
sensitive nature of the correlations in the learning environment and
whether children’s knowledge is likewise graded and context-
sensitive. The performances of 2- to 3-year-olds in the novel noun
generalization task seem rulelike; solids are named by shape, and
nonsolids are named by material. But associative learners at best
mimic rules (Marcus, 2001; Thornton, 2000). Thus, if children’s
expectations about how solid and nonsolid things derive from
learned associations, then children should show the signature
markings of frequency dependency and context dependency. More
specifically, there should be a match between the statistical regu-
larities that characterize the nouns that children know and the
regularities that characterize their performances when they are
generalizing a just-heard novel noun to new instances.

Rationale

In the simulations and experiments that follow, we tested the
idea that 2- to 3-year-old children’s novel noun generalizations are,
at least in part, the product of the correlations that characterize
already learned nouns and also general processes of associative
learning. We provide three kinds of evidence. First, we show that
an artificial associative learner (a connectionist network), when
presented with the same regularities that characterize early nouns,
develops generalized kind-specific attentional biases that are ap-
plied to never-before-experienced things, a shape bias for solids
and a material bias for nonsolids. This evidence demonstrates the
plausibility of the hypothesized mechanism. Second, we use the
connectionist network to discover additional regularities in the
learning environment, making and testing new predictions
about children’s novel noun generalizations. In this way, we
show that the associative learning account is generative and has
predictive power. Finally, we show that this account offers a
unified explanation of both the overarching distinction between
solids and nonsolids and the history- and context-sensitive
nature of children’s performances by applying the account to
cross-linguistic data showing both similarities and differences
in the novel noun generalizations of English- and Japanese-
speaking children.

We specifically concentrate on the nouns known by 2- to 3-year-
olds and (with the exception of one experiment) on the perfor-
mances of 2- to 3-year-olds in the novel noun generalization task.
We did this not because we believe this age is somehow special in
the developmental trajectory or because we believe that children’s
generalized expectations about solids and nonsolids appear all of a
sudden at this age. We did so because the literature suggests that
kind-specific attentional shifts in the novel noun generalization
task are reliable at this age. Thus, we can strongly predict that the
nouns that 2- to 3-year-olds typically know should show the
requisite regularities. In taking this methodological approach, we
did not assume that the first 50 or first 100 or first 200 nouns are
absent of the relevant correlations. Nor did we assume that signa-
tures of early learned correlations might not be evident in younger
children. Rather, we concentrate on the match between the statis-
tical properties of the nouns known by 2- to 3-year-olds and the
novel noun generalizations of children this age as a first step in
examining the possible role of associative learning in creating
expectations about the lexical category structure of different kinds.
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Before we proceed, it is also useful to make clear several
additional untested assumptions and some assumptions that are not
being made. It is critical that we assumed that children’s cognitive
processes include associative learning and generalization by sim-
ilarity, processes we modeled with a Hebbian learning algorithm.
We did not assume that these are the only processes with which
children are endowed or that these processes can necessarily
explain all aspects of children’s cognition beyond their expecta-
tions in the novel noun generalization task. Nor did we assume that
the specific instantiation of associative learning that we used in the
simulations would be an entirely accurate model of even children’s
associative learning. However, we chose the particular modeling
approach we did to make the most minimal and uncontroversial
assumptions about the learning process. Thus, a more complete
model of children’s associative learning and of their cognition in
general is likely to include the processes used here.

We also assumed that children begin word learning with well-
developed sensitivities to the relevant perceptual and linguistic
cues—that is, to properties such as solidity, nonsolidity, and the
constructedness or accidental quality of shapes and to words as
segmented units. There is considerable evidence for these assump-
tions (E. J. Gibson et al., 1979; J. J. Gibson, 1979; Huntley-Fenner
et al., 2002; Mash et al., 1998; Spelke et al., 1992; Spelke &
Hespos, 2001); accordingly, our connectionist model incorporates
these already developed abilities (see Roy & Pentland, 2002, for a
related approach). The critical claim of the model is not that lexical
learning creates sensitivities to the properties of solidity and non-
solidity, or to the dimensions of shape and material, but rather that
lexical learning creates a corpus of correlations between words,
properties, and the dimensions that organize categories and that it
is the internalization of these regularities that creates children’s
generalized expectations about categories of even novel solid and
nonsolid things.

In addition, although we assumed that the nouns typically
known by 2- to 3-year-olds present the relevant correlations, we
made no assumptions about why children learn these nouns rather
than other nouns. Past research has suggested that the nouns
children know strongly reflect the nouns they hear (Huttenlocher,
Haight, Bryk, Seltzer, & Lyons, 1991) and that the nouns children
hear present the same statistical regularities as the names they
know (Sandhofer, Smith, & Luo, 2001). Thus, the regularities we
examined are likely to be those that characterize the learning
environment. However, our assumptions are about the words chil-
dren know; a corpus of lexical categories must be learned before
the correlations within that lexicon can matter. In the General
Discussion, we return to the question of why the early nouns that
children learn have the structure that they do.

Finally, the simulations model correlational learning and chil-
dren’s generalizations from already learned nouns. The model was
not designed to describe how children learned those original nouns
in the first place. That is, the procedure we used to teach the
network a corpus of nouns (the pairings of names and specific
instances) does not adequately model the full complexity of the
learning environment and the learning process but does, we be-
lieve, adequately model the correlational structure that is part of
that learning environment and that is, by hypothesis, the basis of
children’s generalized expectations about the category structures
of solid versus nonsolid things.

Generalized Expectations From Learned Associations

Experiment 1

The goal of this first experiment was to show that a simple
associative learner, taught names for individual things, can learn a
shape bias for categorizing solids and a material bias for catego-
rizing nonsolids. This is a necessary first step because the ability
of ordinary networks to solve this task is not obvious. Connec-
tionist networks are simple associative learners, but the generali-
zation required to yield a solidity–nonsolidity distinction like that
evident in 2- to 3-year-olds is not simple because it requires going
from simple associations between names and specific instances to
abstract, rulelike generalizations. To do this, the learner—network
or child—must go beyond specific experience at (at least) two
levels of abstraction.

The first level of abstraction or first-order generalization is one
readily made by associative devices and involves generalizing
learned responses to new instances. For example, from the word
ball associated with several specific round things of variable color
and material and from the wordsand associated with several
specific heaps of a particular material and range of colors, the
learner may generalize the nameball to other similarly round
things and the namesand to similar materials. These first-order
generalizations are typically easy for networks as they readily
learn correlational patterns among properties and labels (e.g.,
Christiansen & Chater, 2001; Farkas & Li, 2001; Moss, Hare, Day,
& Tyler, 1994; Regier & Carlson, 2001; Schyns, 1991).

It is the second level of abstraction that gives rise to what can be
called overhypotheses and that is less clearly in the repertoire of
simple associative networks. These higher order correlations con-
cern the relevant dimension—the importance of shape in general,
for example, rather than the importance of particular shapes.
Moreover, children’s generalizations reflect not one but two higher
order correlational patterns: Children seem to know that solidity
signals the relevance of shape and nonsolidity signals the rele-
vance of material, even for objects and substances never encoun-
tered before and shapes and materials never experienced before.
The ability of ordinary associative networks to simultaneously
learn and generalize two such patterns has not been well studied.
In a prior effort, Samuelson (2002) attempted to teach a similar
network both a shape and a material bias, but it appeared to be
capable of learning only one at a time. Samuelson attempted to
model a particular training regimen, used to teach shape and
material biases to very young children, children too young to show
a shape or material bias on their own. The children, like the
network, failed to learn two biases and acquired only the shape
bias. Samuelson’s inability to teach the network two context-
dependent biases could reflect the training regimen or it could
reflect a more general inability of this kind of network to simul-
taneously form two context-dependent overhypotheses—that
shape similarity matters for solids but that material similarity
matters for nonsolids.

Accordingly, the goal of the first experiment was to investigate
the ability of a simple Hebbian network to form these higher level
correlations. A Hebbian network learns by strengthening connec-
tion weights between units activated at the same time. Given this
form of learning, the higher level correlations that seem to underlie
children’s novel noun generalizations would have to emerge from
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the specific correlations among individual instances and their
labels. The goal of the first experiment was to determine whether
this learning was possible, given the best possible evidence that
solid things are named by shape but nonsolid things are named by
material.

Specifically, in this first experiment, the network was presented
with a vocabulary that was unlike the one that children learn in that
it perfectly reflected the hypothesized regularity: Half of the train-
ing categories were organized by shape, and half were organized
by material; all of the shape-based categories consisted of solid
things, and all of the material-based categories consisted of non-
solid things. If a simple Hebbian network categorizes novel things
by shape in the context of solidity but categorizes novel things by
material in the context of nonsolidity after learning this “perfect”
training set, then we will have demonstrated that, in principle,
children’s preferences in the novel noun generalization task could
result from learning names for specific instances.

Method

Architecture. We used a simple settling network, a variant of a Hop-
field net. The network was trained using Contrastive Hebbian Learning
(Movellan, 1990), an algorithm that adjusts weights on the basis of corre-
lations between unit activations (see Appendix A). Figure 2 shows the
architecture of the network. The network has a word layer in which words
are represented symbolically, that is, locally: Each unit in the word layer
corresponds to one word.

Individual entities are represented on the perceptual layer. Activation
patterns on this layer represent the solidity, shape, and material of each
individual object or substance presented to the network. More specifically,
the shape and the material of an object (say the roundness of a particular
ball and its yellow rubbery material) are represented by an activation

pattern along the whole layer, in a distributed fashion. Representing the
perceptual properties of things in a distributed manner captures the graded
similarities of things within and between categories and in so doing enables
generalization by similarity. Solidity is represented locally; there is one
unit that stands for solid and another unit that stands for nonsolid. We
represent solidity categorically to capture the idea of what we take to be the
main perceptual contrast—that of the stability of shape when touched
(solid) versus the instability of shape (nonsolidity). The word layer is
connected recurrently to itself as is the perceptual layer.

Finally, there is a hidden layer that is connected to all of the other layers
and recurrently with itself. The word layer and the perceptual layer are
connected only through the hidden layer; there are no direct connections
among them. It is this last fact that makes this network different from a
standard Hopfield net. We chose this approach of an intervening hidden
layer so that the network could build internal representations that stand
between the instances (solid and nonsolid things) and the nouns that label
them. We were particularly interested in how these representations change
as a consequence of learning a vocabulary in which solidity predicts
shape-based categories and nonsolidity predicts material-based categories.
Overview of simulations. The rationale behind the simulations is as

follows: First, we teach the network a vocabulary, in this case one that
perfectly represents a correlation between solid and shape-based and be-
tween nonsolid and material-based. We teach the network a vocabulary by
pairing “names” with individual “perceptual” patterns. Second, we test
how the network categorizes novel things. That is, after learning this
vocabulary, does the network “know” to attend to the shape of a novel solid
thing but to attend to the material of a novel nonsolid thing?
Training. The training set for the network consisted of 20 lexical

categories. Half of these words, the solid–shape words, were paired with
categories instantiating a solid–shape-based correlation, and the other half,
the nonsolid–material words, were paired with categories instantiating a
nonsolid–material-based correlation. That is, each of the 10 solid–shape
words was paired with individual instances of a category of things that
were solid and shared a value along the shape dimension, and each of the
10 nonsolid–material words was paired with individual instances of a
category of things that were nonsolid and shared a value along the material
dimension. During an epoch, the network was trained on each of the words
in the training set, paired with a randomly generated instance of that
category. Thus, the network saw as many different instances of each word
as the number of training epochs.

During training, a presentation of a word-instance pairing for the net-
work consisted of the simultaneous activation of a unit on the word layer,
a unit on the solidity layer, and shape and material patterns on the
perceptual layer. The specific training patterns used in this simulation were
generated in the following way. To make a solid–shape word, a unique unit
in the word layer (name of the category) and the unit representing solid
were activated together with a 12-bit binary number that was randomly
generated to represent the shape of the object, the core of the category
because it is a shape-based category. The value along the material dimen-
sion was left unspecified, to be determined randomly by the program as it
trained the network on each instance of the category. Thus, during each
presentation of a solid–shape word, the network learns associations among
the unit in the word layer, the unit representing solid, a particular shape
pattern, and variable material patterns. Examples of four instances of one
solid–shape word and of one nonsolid–material word are shown in
Figure 3.

Patterns for nonsolid–material words were generated analogously. These
patterns consisted of a unique unit in the word layer, the unit representing
nonsolid, a particular material pattern, and variable shape patterns. Thus,
during training, the network was presented with many instances of each
word, but the instances of a given solid–shape word always shared the
same unique shape and had different materials, whereas the instances of a
particular nonsolid–material word always shared the same unique material
and had different shapes.

Figure 2. The perceptual layer represents the shape, material, and solidity
of things. These are connected to the word layer through a recurrent hidden
layer. Although not indicated in the figure, the perceptual layer is also
recurrently connected to itself, as is the word layer.
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The networks were trained for 100 epochs, so over the complete training
session, they were presented with a total of 100 instances for each of the
20 words in the training set. This duration of training was set on the a priori
assumption that by the age of 2 1/2 years, children have seen many
instances of common categories of solid and nonsolid things.
Testing. After learning a training vocabulary that presents a perfect

correlation between solidity and naming by shape and between nonsolidity
and naming by material, does the network “know” to give a greater weight
to the shape than to the material of a novel solid thing but to give a greater
weight to the material than to the shape of a novel nonsolid thing? We
addressed this question by presenting the network with novel input pat-
terns—novel shapes and materials—and examining the resulting patterns
of activations on the hidden layer. If the network has learned to highlight
information about shape in the context of solidity, then the pattern of
activation on the hidden layer given an input pattern marked as solid should
represent mostly the shape information from the input pattern and not the
material information. If, in addition, the network has learned to highlight
information about material in the context of nonsolidity, then the pattern of
activation on the hidden layer given an input pattern marked as nonsolid
should represent mostly the material information from the input pattern and
not the shape information. Thus, the patterns of activation on the hidden
layer for two solid things of the same shape but different material should
be highly similar. In contrast, the patterns of activation on the hidden layer
for two nonsolid things of the same material but different shape should be
highly similar (Smith, 1995; Smith, Gasser, & Sandhofer, 1997).

Accordingly, each test trial consisted of presenting three input pat-
terns—an exemplar, a shape match, and a material match—to the network
and recording the activation pattern on the hidden layer after each of these
patterns was presented and the network had settled. We call this pattern
after settling the internal representation (IR) vector. The shape and material
matches used in testing were generated by selecting the pattern along the
matched dimension in the exemplar (e.g., shape for the shape match,
material for the material match) and combining it with a different randomly
generated pattern along the other dimension (e.g., variable material patterns
for the shape match, variable shape patterns for the material match).

The structure of a test trial is shown in Figure 4. We first presented the
network with an input pattern corresponding to a novel exemplar and then
recorded the IR vector. Then we presented the network with an input
pattern that presented the same shape but a different material (a shape
match) and with an input pattern that presented the same material but a
different shape (a material match), recording the IR vectors for both.
Finally, we calculated the similarity between the IR vector for the novel
exemplar and the IR vector for its shape match and between the IR vector
for the novel exemplar and the IR vector for its material match. We used
the absolute value of the difference between the vectors as a measure of

similarity. If the network has learned the higher order correlations, then the
IR vectors for the exemplar and the shape match should be more similar
when they are solid and the IR vectors for the exemplar and the material
match should be more similar when they are nonsolid. We simulated
choices in a noun extension task by computing forced-choice probability
using these similarity measures and Luce’s choice rule (Rumelhart &
McClelland, 1986). The similarity measure (the absolute difference be-
tween the two vectors) was normalized by subtracting each difference
value from the maximum difference found in the simulations. As per Luce
(1963), the probability of choosing a particular test object was computed by
dividing the similarity of the IR vectors for that choice by the sum of the
similarity of the IR vectors for that choice and for the alternative choice.
That is, the probability of a shape choice was calculated as the similarity
of the IR vectors of the shape-matching test object divided by the sum of
the similarities of the IR vectors for the shape-matching and material-
matching test objects.

The network was tested on 40 novel exemplars, each with four shape
matches and four material matches, for a total of 160 test trials. Half of
these trials involved patterns of activation representing solid things and
half patterns representing nonsolid things. The 40 novel exemplar patterns
used in testing were randomly generated and thus stand in no systematic
relation to the training exemplars. However, both the training and test sets
were randomly generated, and both sampled the entire space of possible
instances. As Marcus (2001) noted, a training set that covers the whole
space of possible instances may be crucial to enabling connectionist
networks to form broad generalizations.

Ten networks were trained (with 10 different randomly generated initial
connection weights) as described above. Appendix A provides the equa-
tions for the simulations, and Appendix B summarizes the architecture,
training and testing sets, and the critical comparisons at test for this and for
the remaining simulations in this article.

Results and Discussion

The networks readily learned the words in the training vocab-
ulary. Figure 5 shows the networks’ performance during training,
that is, their ability to correctly label new instances of the trained
categories. More specifically, Figure 5 shows the percentage of
instances for which the correct unit in the word layer was activated
as a function of number of passes (epochs) through the training set.
The networks reached ceiling performance after 20 passes through
the training vocabulary. Thus, in subsequent simulations, the net-
works were trained for only 32 epochs.

Figure 3. Examples of patterns of instances for (a) one shape-based category and (b) one material-based
category. The activation pattern on the perceptual layer is represented by the shading of the units.
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Figure 6 shows the proportion of shape choices in the simulated
version of the novel noun generalization task before and after
training. Before training, the networks were unbiased; the differ-
ence between the proportion of shape choices for solids and
nonsolids was not significant,t(9) � 0.086, p � .9, and the

proportions of shape choices predicted for both solid and nonsolid
trials were not different from chance,t(9) � �1.385,p � .2, for
solids; t(9) � �1.022,p � .3, for nonsolids.

After training, the networks preferred the shape match for the
solid exemplars and the material match for the nonsolid exemplars.

Figure 4. Structure of a network’s test trial. The similarity (Sim) between the internal representations (IRs) of
the target pattern and its shape and material matches is used to predict probability of choice.

Figure 5. Correct productions of the target word given a training instance during the training phase for the 10
networks. The thick line represents the average performance of the 10 networks. e� epoch.
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A pairedt test comparing the proportion of shape choices predicted
by the networks in solid trials versus nonsolid trials revealed that,
after training, the difference was significant,t(9) � 12.105,p
� .0001. In addition, the proportion of shape choices predicted for
the solid trials was significantly greater than chance,t(9) � 5.425,
p � .001, and for the nonsolid trials was significantly less than
chance,t(9) � �8.170,p� .0001. There was no such differential
treatment for solids versus nonsolids in the networks before train-
ing. Eight of the 10 networks showed this pattern of shape choices
for the solids and material choices for the nonsolids (2 of the
networks developed one of the biases but not the other). These
networks after training look like “idealized” children, with a strong
shape bias for solids and a strong material bias for nonsolids.

It is critical that in these networks we know the processes that
cause the different patterns of generalizations for solids and non-
solids. The different treatment of solid and nonsolid things results
from changes in the way the network represents solid and nonsolid
inputs. For solid inputs, shape is emphasized in the network’s
internal representations, so the network’s representations of two
patterns for solids that have the same shape but different material
are more similar to each other than are its representations of two
patterns for solids of the same material but different shape. The
opposite is true for nonsolid inputs: The network’s representations
of nonsolids of the same material but different shape are more
similar to each other than are the representations of nonsolids of
the same shape but different material.

Figure 7 shows the effect of training on the network’s repre-
sentations as the average distance (absolute difference) between IR
vectors for patterns representing solid things of the same shape,
solid things of the same material, nonsolid things of the same
shape, and nonsolid things of the same material. In the network’s
internal representations, solid things of the same shape but differ-
ent material are more similar to one another than are solid things
of the same material but different shape; nonsolid things of the
same material but different shape are more similar to each other
than are nonsolids of the same shape but different material. Thus,

a connectionist network that is taught only associations between
specific words and specific instances can show performance de-
scribable as knowledge of a more abstract kind if the associations
present the higher order correlation: Solid things with the same
name have the same shape, and nonsolid things with the same
name have the same material. This result suggests that, at least in
principle, it is possible to create a generalized distinction about
different kinds through associative learning. As far as we know,
this is the first demonstration that simple connectionist networks
can acquire context-specific second-order generalizations.

One potential criticism of this demonstration is that the training
sets were described to the network in terms of the potentially
relevant properties—shape, material, and solidity. The inclusion of
these properties is justified by developmental evidence on infant’s
sensitivities to them. However, the input to the network did not
describe instances on a variety of other potentially irrelevant
properties (e.g., size, color, or location). Thus, the network was
presented with an easier task than children face. Of course, this is
true on many grounds. All modeling is simplification. We offer
two arguments to support the simplification of describing the
inputs in terms of only the relevant properties. First, connectionist
networks are adept pattern learners, well able to find the predictive
relations and ignore the nonpredictive ones (see Thornton, 2000).
To demonstrate this adeptness in the present case, we replicated
the simulations but added irrelevant variation, specifying each
input in terms of shape, material, “size,” and “location” such that
the one relevant property (shape for solids, material for nonsolids)
comprised only 25% of the input pattern. In this set of simulations,
the shape and material vectors were generated as described in the
main simulations. The size and location vectors were randomly
generated for each input and thus did not consistently predict
category membership for solids or nonsolids. The results of this
simulation were nearly identical to those reported above. Most
important, the networks still showed a generalized bias to represent
the shapes of solids but the materials of nonsolids. This replication,
of course, does not prove the point as one could imagine schemes

Figure 6. Mean proportion choices of the shape-matching test item by the networks for solid and nonsolid
patterns prior to training (e0) and after training (e100). Error bars represent standard error. e� epoch.
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in which the relevant properties comprise a vanishingly small
proportion of the input vector. However, given the ability of
associative engines to find predictive relations in noisy data, we
suspect such networks would still be successful. Second, and more
important in our view, theoretical descriptions of the training
instances that emphasize solidity, nonsolidity, shape, and material
seem justified in terms of the developmental evidence that strongly
indicates children’s perceptual systems are highly sensitive to
these properties even before word learning (see, e.g., Bushnell,
1982; Bushnell & Boudreau, 1991; Mash et al., 1998). Children do
not begin word learning with an infinite list of possible dimensions
but rather—through their biology and through their interactions
with the world—have perceptual systems tuned to particular
dimensions.

Experiment 2

Experiment 1 demonstrated that a simple associative learning
device can form abstract generalizations about how different kinds
are named. Or to be more specific, the networks can develop
connection weights that emphasize shape in the context of a
solidity cue but emphasize material in the context of a nonsolidity
cue. We propose, however, that by taking seriously the details of
the correlations in children’s noun lexicons, we should be able to
model the finer grained aspects of children’s preferences in the
novel noun generalization task, for example, the greater robustness
of the shape bias for solids than the material bias for nonsolids.
However, there is also the possibility that when the network is
given “messier” correlations, those correlations will not be strong
enough to support the overarching solid–nonsolid distinction.
Thus, it is an open question whether a network trained on a more
realistic set of correlations will model children’s performance in
the novel noun generalization task. In Experiment 2, we attempted
to model children’s performance by using a more realistic training
set than the idealized one used in Experiment 1. We specifically

considered three ways in which the correlations in Experiment 1
failed to match the correlations in the world.

First, the network in Experiment 1 was trained on an idealized
version of children’s vocabularies such that all lexical categories
of solid things were organized by shape and all lexical categories
of nonsolid things were organized my material. However, as
reported by Samuelson and Smith (1999), the correlational struc-
ture among the nouns that English-speaking children learn early is
not that clean. There are a considerable number of early nouns that
do not follow these rules. For example, according to the adult
judgments collected by Samuelson and Smith,bubble names a
nonsolid shape-based category;soapnames a solid material-based
category; andnail, key, andcrayonname categories for which both
shape and material matter. Will a statistical learner be able to learn
the general rules in spite of these exceptions?

Second, the network in Experiment 1 was trained on a corpus in
which half of the lexical categories were for solid things and half
were for nonsolid things. In contrast, children typically know
many more names for solid objects than for nonsolid substances.
This imbalance seems a likely factor in creating a shape bias that
is more robust than the material bias. But are the few nonsolid
material categories in this corpus enough for a simple neural
network to learn to attend to material in the context of nonsolids,
or will it overgeneralize attending to shape for both solids and
nonsolids?

Third, when the training patterns for the network in Experiment
1 were constructed, additional correlations that are the natural
product of differences between solids and nonsolids were not taken
into account. In Experiment 1, the patterns representing shapes and
materials for both solids and nonsolids did not differ in any
systematic way. However, in the real world, solids can take a wide
range of shapes, from simple to complex and from accidental
pieces or flattened round shapes to ones with multiple parts,
straight edges, and sharp angles. In contrast, nonsolids can take a
much more restricted range of shapes, and these tend to be simpler

Figure 7. Raw similarity measures (absolute difference) for the internal representations (IRs) in Experiment 1.
Error bars represent standard error. sol� solid; nsol� nonsolid; mat� material.
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than the shapes of solids. For example, wood can take the shape of
logs, blocks, chairs, or ladders, but sand (as opposed to the con-
tainer it is in) can take very few shapes. Being solid is thus less
predictive of the particular shape an individual entity will take, and
being nonsolid is more predictive. At the same time, shape is more
predictive of category membership for a solid thing, but shape is
less predictive of category membership for a nonsolid thing. Can
a simple associative device find the correct higher level correla-
tions given this added complexity? We addressed these issues in
Experiment 2 by creating a training set that mimicked these
properties: the imperfect correlations between solidity and cate-
gory structure, the lopsided nature of children’s early categories
with many more names for solid things than for nonsolid things,
and the correlation between nonsolidity and a restricted range of
simpler shapes.

Method

All aspects of the architecture and the training and testing procedures in
Experiment 2 were identical to those used in Experiment 1.
The modeled vocabulary.The goal of the training phase was to put in

the network the vocabulary that a child brings into a novel noun general-
ization experiment. Accordingly, we first describe the structure of chil-
dren’s early vocabulary of object and substance terms, the structure we
attempted to mimic in the network’s training set. The training set was
modeled on a set of 149 of the earliest learned object and substance names
(Fenson et al., 1993). We characterized the category structure of each
noun—its organization by shape or material—through the use of the
judgments collected by Samuelson and Smith (1999). In addition, for each
category we obtained judgments from three adults on the perceptual cues
indicating solidity. We did this rather than use adults’ characterizations of
things as simply “solid” and “nonsolid” (as in Samuelson & Smith, 1999)
in order to model the correlations among the perceptual properties (and not
the higher order notions of solidity–nonsolidity that might result from those
correlations). Accordingly, adults were asked for each noun to answer the
following three questions:

1. Do items named by the word change shape when pressed?

2. Do they return to their original shape after being pressed?

3. Do they take the shape of their container?

Each noun was then classified as referring to solid things if the three judges
answered all three questions “no” or as referring to nonsolid things if all
three judges answered the three questions “yes.” Nouns with any other
pattern of answers were categorized as perceptually ambiguous.

Figure 8 shows the relation between solidity–nonsolidity and category
structure in this early learned vocabulary of object and substance terms. It
is important that although adults judged most solid things to be categorized
by shape, there were exceptions and complications; for example, muffins
were judged to be alike in both shape and material, and bubbles were
judged to be nonsolid but similar in shape. However, as is apparent, within
this corpus of nouns and by these methods, solids tend to be named by
shape, and nonsolids tend to be named by material.
The training set. The networks were trained on 24 categories that

instantiated the same regularities (and irregularities) evident in our analysis
of early nouns. Figure 9 shows the percentage of nouns of each kind
(solid–shape, solid–material, nonsolid–shape, and nonsolid–material) for
the training set for the network. As one can see by comparing Figure 8 and
Figure 9, the statistical regularities present in the larger corpus were present
in the smaller training set.

More specifically, the statistical regularities across the noun vocabular-
ies were built into the network’s training set in the following way. First, for
each word that the network was to be taught, a pattern was generated to
represent its value along the relevant dimension—the dimension on which
objects named by that noun were judged to be similar. Second, at each
presentation of the word, the value along the irrelevant dimension was
varied randomly. For example, the wordball was judged to refer to things
that are similar in shape; thus, a particular pattern of activation was
randomly chosen and then assigned to represent ball-shape. All balls
presented to the network were defined as having this shape, although each
ball presented to the network also consisted of a unique and randomly
generated pattern defining the material. So, each time the unit representing

Figure 8. Percentages of early English nouns naming solid and nonsolid things judged by adults to refer to
things alike in shape, material, or both.
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the word ball was turned on during training, the pattern representing
ball-shape was presented along the shape dimension, and a different
randomly generated pattern was presented along the material dimension.
Thus, all instances ofball shared the same shape pattern but had different
material patterns.

To implement the fact that solid things can hold more varied and
complex shapes than can nonsolid things, we assumed solid objects to have
a bigger range of values along the shape dimension than nonsolid sub-
stances. Thus, instances of different solid lexical categories were very

different in shape, but instances of different nonsolid lexical categories
were not.

Results

The networks readily learned the words in the training vocab-
ulary. Figure 10 shows the networks’ performance on the training
set as training progressed. They-axis shows the percentage of

Figure 9. Percentages of training categories of solid and nonsolid things that were shape based, material based,
or both.

Figure 10. Correct productions of the target word given a training instance during the training phase for the
10 networks in Experiment 2. The thick line represents the average performance of the 10 networks. e� epoch.
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correctly labeled category instances; thex-axis shows number of
passes through the training set. The networks approached ceiling
performance after eight passes through the training vocabulary.

Figure 11 shows the proportion of shape choices in our simu-
lated version of the novel noun generalization task before training
and after being trained for 32 epochs. A pairedt test comparing the
proportion of shape choices predicted by the networks on solid
trials versus nonsolid trials revealed that, after training, the differ-
ence was significant,t(9) � 19.720,p� .0001. More specifically,
the trained connectionist networks showed a preference for shape
matches for solids and a preference for material matches for
nonsolids. The proportion of shape choices predicted for the solid
trials was significantly greater than chance,t(9) � 8.315, p �
.0001, and for the nonsolid trials was significantly less than
chance,t(9) � �23.595,p � .0001. That is, the networks were
more likely to choose the shape match for a novel solid exemplar
but were more likely to choose the material match for a novel
nonsolid exemplar. All of the 10 networks showed this pattern,
developing a shape bias for solids and a material bias for
nonsolids.

We also analyzed the proportion of shape choices predicted by
the networks for the patterns of the testing set prior to training. A
pairedt test revealed a significant difference between the propor-
tion of shape choices predicted for the solid trials and the shape
choices predicted for the nonsolid trials,t(9) � 14.965,p� .0001.
Comparing the networks’ predictions to chance revealed chance
performance on the solid trials,t(9) � 0.168, p � .86, but a
proportion of shape choices significantly less than predicted by
chance for nonsolid trials,t(9) � �14.419,p � .0001. In other
words, the shape bias was not there at the start for the networks,
but it emerged as a consequence of learning. However, in contrast
with the results in Experiment 1, these networks showed a material
bias for nonsolids before the stimuli had been trained at all. This

result contrasts sharply with the developmental evidence that in-
dicates that for children, the material bias emerges later than the
shape bias (Samuelson & Smith, 1999; Subrahmanyam et al.,
1999).

Why might a material bias for nonsolids preexist word learning
in the present simulations but not in the experimental tests of
children’s biases? The reason for this early material bias in the
networks is evident when one looks at the networks’ internal
representations. Figure 12 shows the average distance between IR
vectors for patterns representing solid things with the same shape,
solid things of the same material, nonsolid things of the same
shape, and nonsolid things of the same material before and after
training. For solids, prior to training, instances that match in shape
are not more similar to each other than are those that match in
material. It is training that causes the shape of solid inputs to be
emphasized so that the network’s representations of two patterns
for solids that have the same shape but different material are more
similar to each other than its representation of two patterns for
solids of the same material but different shape. However, for
nonsolids, before training, the distance between IR vectors for
patterns that represent the same material but different shape is
much smaller than the distance between IR vectors representing
the same shape but different material. The cause is straightforward.
This greater similarity for nonsolids matching in material than for
nonsolids matching in shape results from the restricted range of
shapes that nonsolids can take.

This assumption was built into the training set because it seemed
to characterize a real difference between solid and nonsolid shapes
in the world and because it was unclear a priori whether this added
complexity would help or hinder the formation of the two biases.
It is critical that if this characterization of the perceptual differ-
ences between the ranges of shapes of solid and nonsolid things is
correct, then the simulations predict that children—like the net-

Figure 11. Mean proportion choices of the shape-matching test item by the networks for solid and nonsolid
patterns prior to training (Epoch 0) and after training (Epoch 32) in Experiment 2. Error bars represent standard
error.
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works—should have to learn a shape bias for solids but should
appear to generalize names for nonsolids by material from the start
if these materials are presented in the simpler and less constructed
shapes typical of nonsolids. This seems a strange prediction be-
cause the existing evidence indicates a developmentally earlier
shape bias than a material bias (e.g., Samuelson, 2002; Samuelson
& Smith, 1999; Subrahmanyam et al., 1999). One potentially
relevant factor is the nature of the shapes of the nonsolids in the
simulations and in the experiments. The shapes of nonsolids in the
simulations were relatively similar to each other on the assumption
that nonsolids naturally take accidental shapes that do not vary
greatly. Experiments with children have typically involved some-
what more constructed shapes. In one experiment, Soja et al.
(1991) varied the constructedness of nonsolid shapes and found no
effect, but still their test sets were arranged such that the “uncon-
structed” shapes differed substantially from each other. At any
rate, the results of the simulations suggest the issue merits
reexamination.

If the predictions from the simulations are taken seriously, then
they suggest the following: First, when very young children (who
do not yet know many names for solid and nonsolid things) are
given novel nonsolid things in the unconstructed shapes typical of
nonsolids (splatters and smears), they will generalize names by
material. This is predicted not because these children know any-
thing about the importance of material for nonsolids but simply
because the shape differences for these unconstructed solids are
relatively small and thus the relative overall similarity between any
two nonsolids in accidental shapes will be determined mostly by
material similarity. Second, when given nonsolid things in con-
structed shapes, very young children (who do not yet know many
names for solid and nonsolid things) will not attend to material
because they have not yet developed a generalized expectation to
name nonsolid things by material. This generalized expectation,
like the generalized shape bias, must be learned from learning
names for things. We tested these predictions in Experiment 3.

Experiment 3

Children younger than 30 months (between the ages of 18 and
28 months) were selected for this experiment because the goal was
to test the predictions of the networks prior to mastery of the
vocabulary used as the basis for the training sets for the networks,
a vocabulary that by normative standards is known by 50% of
30-month-olds (Fenson et al., 1993). In this experiment, the chil-
dren were presented with novel nonsolid materials either in the
typical roundish, irregular shapes of nonsolids or in the con-
structed, sharp-edged shapes more typical of solids.

Method

Participants. Twelve children between the ages of 18 and 28 months
were recruited.
Stimuli and design. The shapes and materials used in this experiment

are shown in Figure 13. The natural shapes were a round mound and a thick
smear; the constructed shapes were a squaredU shape and a circle with a
slice cut out. The materials for one stimulus set were (a) Noxzema mixed
with coarse brown sand and (b) shaving cream mixed with fine colored
sand. The materials for the second set were (a) toothpaste mixed with
glitter and (b) frosting. All children saw both a natural set and a constructed
set. To control for the saliency of different materials, we assigned half of
the children at random to judge the natural version contrasting Noxzema
and shaving cream and the constructed version contrasting toothpaste and
frosting. The remaining children had the opposite assignment. The two
exemplars were presented in separate blocks. Each shape-match/material-
match pair was presented four times, for a total of eight trials. The
materials and order of sets were counterbalanced across participants; the
position of the choices was counterbalanced across trials.
Procedure. The procedure used was a forced-choice task. The children

were shown an exemplar (e.g., the Teema) and told its name (“This is the
Teema”). The children were then presented with pairs of objects, a shape
match and a material match, and were asked, “Can you show me the
Teema?” Children were allowed to touch the stimuli if they showed interest
in doing so. If the shapes were distorted, the experimenter reformed them

Figure 12. Raw similarity measures for the internal representations (IRs) for the four kinds of test items in
Experiment 2. Error bars represent standard error. sol� solid; mat� material; nsol� nonsolid.
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out of the children’s view before continuing with the experiment. Chil-
dren’s responses were coded as the first object they touched or to which
they pointed.

Results

Figure 14 shows the proportion of material choices for the
natural and the constructed sets. Children were more likely to
choose the material match when the nonsolid materials were
presented in the shapes typical of nonsolids than when the nonsolid
materials were shaped into more angular and solid-looking shapes,
t(11) � 3.855,p � .01. Also, with the natural set, children were
more likely to choose the material match than would be expected
by chance,t(11)� 3.071,p� .01. However, in the constructed set,
children’s choices did not differ from chance,t(11)� �1.483,p�
.1. This experiment shows that if the shapes used are the shapes
typical of nonsolids, then young learners do form categories of
nonsolids by material. However, this is not a generalized bias that
extends to nonsolids in more constructed shapes. These results
suggest that the assumption about the different ranges of possible
shapes for solid and nonsolid materials may be right. That is, with
unconstructed nonsolids, the children show an early and perhaps
unlearned preference for material matches—just as the untrained
network does.

Summary of Experiments 1–3

The simulations in Experiments 1 and 2 demonstrated the mech-
anistic plausibility of the associative learning account, and the
results from the children in Experiment 3 provide support for our
assumptions about the shape regularities that characterize solids
and nonsolids. In Experiments 1 and 2, we showed that networks
trained on a biased vocabulary become biased. From learning
specific instances of categories of solid things similar in shape and
specific instances of categories of nonsolid things similar in ma-
terial, the network learned to attend to the shapes of even novel
solid things and to the materials of even novel nonsolid things.
Moreover, Experiment 2 showed that the noisy regularities that
characterize the early English noun corpus, imperfect as they are,
may be sufficient to create these more abstract generalizations.
Finally, these experiments also highlight the value of simulations
and the value of trying to take seriously the regularities in the early
noun corpus. The simulations in Experiment 2 with the assump-
tions about the nature of the input led to a new prediction about an
early unlearned material bias for nonsolids in unconstructed
shapes. The findings not only support the prediction but also point
to the importance of shape—constructed or unconstructed—in
children’s category formation, a factor that some have taken to be

Figure 13. Stimuli for Experiment 3.
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essential to mature concepts of object and substance (Gelman &
Bloom, 2000; Prasada et al., 2002).

A New Prediction: The “Ontology” Bias

Experiment 4

One pervasive regularity in the early noun lexicon is that things
that share the same name share the same solidity—for example, all
tables are solid, all juice is nonsolid, and all wood is solid.
Although any material can, in principle, be solid or nonsolid
(depending on the temperature), names tend to not refer to cate-
gories that span the solid–nonsolid boundary. Thus, liquid water is
“water,” but solid water is “ice.” This tendency is very strong in
early child vocabulary. In fact, it is true for all of the nouns in the
early noun corpus except for one—egg, which adults judged to
have both solid and nonsolid forms. If the networks and children
are learning these statistical regularities, then they should adhere to
this constraint in their novel noun generalizations. That is, after
training, the networks should act as if solids and nonsolids are

different kinds that cannot be in the same category. We call the
hypothesized bias to restrict categories to items of the same solid-
ity the ontology bias because, like a hypothesized psychological
ontology, such a bias would operate to divide entities into non-
overlapping kinds.

The rationale for our method to test this hypothesized bias is
clarified by thinking about the typical way the shape bias for solids
and the material bias for nonsolids are measured in the novel noun
generalization task. Figure 15a shows an example of a typical task
trial with solids. The child is shown a woodenU shape and told its
name. The child is then asked to choose which of a woodenL
shape or a plasticU shape would also be called by the same name.
Thus, the child has to choose whether the name refers to the shape
(U shape) or the material (wood) of the named object. Notice that
in this case, the shape match is a match in both solidity and shape,
and the material match is a match in both solidity and material. In
the absence of a solidity mismatch, the evidence indicates that
children choose the shape match for a solid object. The question is,
Will children still choose the shape match if it no longer matches

Figure 14. Mean proportion of material choices by the children given nonsolid exemplars in natural and
constructed shapes. Error bars represent standard error.

Figure 15. Structure of the (a) same-solidity trials and (b) cross-solidity trials for solid targets.
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in solidity, if it violates the ontology bias? Figure 15b shows an
example of a cross-solidity set. In contrast to the traditional same-
solidity sets, in the cross-solidity set the shape match is constructed
from a nonsolid material such as shaving cream, but the material
match is still the same, constructed of wood. Thus, the shape match
is no longer a solidity match, but the material match is still both a
material and a solidity match. In this experiment, we tested this
prediction with networks, and in the next two experiments with
children. If the networks (and the children) have learned the
regularities in the lexicon involving solidity, and if learning these
regularities creates overhypotheses or second-order generaliza-
tions, then networks (and children) should be constrained to extend
names to other things of the same solidity.

Method

Architecture and training. The network architecture, training set, and
training procedure were the same as those used in Experiment 2.
Testing. The testing procedure closely followed the procedure in Ex-

periment 2. However, the specifics of the test patterns were changed to
make the cross-solidity test, as shown in Figure 16. The same-solidity trials
were the same as in Experiment 2: Both the novel exemplar and the two
test objects shared the same solidity (all three were solid or all three were
nonsolid). In contrast, for the cross-solidity trials, the novel shape test
match for solid exemplars was defined as nonsolid, and the novel material
test match for nonsolid exemplars was defined as solid. Defining a pattern
as solid or nonsolid simply meant activating the corresponding unit in the
solidity layer of the network. Thus, the only difference between the
same-solidity test patterns and the cross-solidity test patterns was the
activation pattern along the solidity layer for the shape match in the case of
solid trials and for the material match in the case of nonsolid trials—a
difference of one bit. So, on the cross-solidity solid trials, we compared the
network’s preferences for a solid material match versus a nonsolid shape
match, and on the cross-solidity nonsolid trials, we compared the network’s
preferences for a nonsolid shape match versus a solid material match.

As in Experiment 2, on each test trial, a novel exemplar was created by
randomly generating an activation pattern along the shape and material
dimensions. Shape and material matches were created by combining the
exemplar’s shape and material patterns with randomly generated material

and shape patterns, respectively. Again, the networks were tested on 40
novel exemplars, half of them defined as solid and half of them defined as
nonsolid.

Results

Figure 17 shows the proportion of shape choices predicted by
the networks for solid exemplar trials and for nonsolid exemplar
trials. These proportions for each of the 10 networks in each
condition were submitted to a 2 (solidity: solid vs. nonsolid ex-
emplar)� 2 (set: same solidity vs. cross-solidity) mixed design.
The analysis revealed a main effect of solidity,F(1, 18)� 148.12,
p� .001; a main effect of set,F(1, 18)� 13.98,p� .001; and a
reliable Solidity� Set interaction,F(1, 18)� 58.13,p� .001. In
addition, the networks’ predictions were compared against chance.
In the same-solidity set condition, the networks predicted more
shape choices than expected by chance on the solid trials,t(8) �
12.551,p � .001, and more material choices than expected by
chance on the nonsolid trials,t(8) � �12.872, p � .001. In
contrast, on the cross-solidity trials, the networks predicted chance
performance,t(8) � 1.396,p� .2, for solids;t(8) � 1.717,p� .1,
for nonsolids. That is, when the exemplar was solid, the networks
no longer preferred the shape match, and when the exemplar was
nonsolid, the networks no longer preferred the material match.
None of the individual networks showed a shape bias on the
cross-solidity trials given a solid exemplar, and none of the indi-
vidual networks showed a material bias on the cross-solidity trials
given a nonsolid exemplar. Thus, the pattern of generalization
observed in Experiment 2 (and typical in experimental tests of
children) is now disrupted: The networks did not show a prefer-
ence for shape on solid trials and did not show a preference for
material on nonsolid trials. These trials break up the correlations
between within-category sameness in solidity and shape and
within-category sameness in nonsolidity and material, and in so
doing disrupt the shape bias and the material bias.

Figure 16. Representation of same-solidity (a) and cross-solidity (b) trials in the network. The only difference
between the same-solidity test patterns and the cross-solidity test patterns is the activation pattern along the
solidity layer for the shape match in the case of solid trials and for the material match in the case of nonsolid
trials.
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Experiment 5

The question for this experiment was, Given a solid object, will
children refuse to generalize its name to an object of the same
shape if the test object is not solid? To test this question, we
created solid exemplars with specific shapes and then tested ob-
jects of the same shape out of different solid materials or out of a
nonsolid material. We contrasted these shape-matching test objects
with ones that matched in solidity and material but differed in shape.

Method

Participants. Twelve children between the ages of 30 and 36 months
participated. This age range was selected because the predictions derive
from the performance of the networks after training on a vocabulary
normatively known by 50% of children at 30 months.
Stimuli. The stimuli for Experiment 5 are shown in Figure 18. There

were two exemplar objects. The exemplar for one set, the Teema, was aU
shape covered with red coarsely grained paint. The exemplar for the other
set, the Wazzle, was an irregularM shape made of (rigid) blue cheesecloth.
For each exemplar, there were three objects matching in material and two
sets of items matching in shape. The same-solidity set consisted of three
solid objects that matched the exemplar in shape and differed in material
(e.g., metallic clay, Styrofoam covered with fur). The cross-solidity set
consisted of shape matches made out of nonsolid materials (e.g., shaving
cream, hair gel).
Procedure. The procedure used was a forced-choice task. The children

were shown an exemplar (e.g., the Teema) and told its name (“This is the
Teema”). The children were then presented with pairs of objects, a shape
match and a material match, and were asked, “Can you show me the
Teema?” Each child was presented with the same-solidity set of one
exemplar and the cross-solidity set of the other. Half of the children were
assigned at random to judge the same-solidity version of one exemplar and
the cross-solidity version of the other. The two exemplars were presented
in separate blocks. Each shape-match/material-match pair was presented
twice in random order for a total of 12 trials. The order of the sets was

counterbalanced across participants; the position of the choices was coun-
terbalanced across trials.

Results

Figure 19 shows the proportion of shape choices for the cross-
solidity and same-solidity sets. At test revealed a significant
difference between the proportion of shape choices in the two sets,
t(11) � �2.22,p � .05, indicating that the children attended to
shape more in the same-solidity set than in the cross-solidity set.
Comparisons to chance showed that on the traditional trials, the
children selected the shape match at levels above chance that
approached conventional levels of significance (p � .10). Of the
10 children, 8 selected the shape match more than 75% of the time.
On the cross-solidity sets—when the exemplar and material
matches were solid but the shape match was nonsolid—the chil-
dren were reliably more likely than chance to pick the solid
material match (p� .05). That is, they appeared to actively avoid
the shape match if it meant putting a nonsolid thing in the same
category as the labeled solid exemplar. These results are consistent
with a bias in children to extend category names for solid things
only to other solid things.

Experiment 6

Do children extend names for nonsolid things only to other
nonsolid things and not to things of the same material that are
solid? Figure 20 illustrates the three kinds of trials in Experiment
6. Given a nonsolid target, a shape match (also nonsolid) could be
pitted against (a) a nonsolid material match (a same-solidity trial),
(b) a solid material match in a simple shape (a cross-solidity–
natural-shape trial), or (c) a solid material in a constructed shape
more consistent with a solid thing (a cross-solidity–constructed-
shape trial).

Figure 17. Proportion of shape choices predicted by the networks for the same-solidity and cross-solidity trials
given solid and nonsolid exemplars. Error bars represent standard error.
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One key question is whether given a nonsolid exemplar, chil-
dren will refuse to generalize its name to a material match if the
test object is solid. A second question is the role of shape con-
structedness in these extensions. If children’s expectations reflect
the correlational structure in their vocabularies, then they should
be more likely to choose the matching material when it is nonsolid
(same-solidity condition) than when it is solid. Further, if they are
sensitive to the correlation between kind of shape and category
structure, then they should be more likely to choose the material
match on the cross-solidity trials when the test object is solid but
shaped like a nonsolid (cross-solidity–natural condition) than
when it is solid and is shaped like a solid (cross-solidity–
constructed condition).

Method

Participants. Eighteen children between the ages of 30 and 36 months
participated in this study.
Stimuli. Many materials have solid and nonsolid forms that are not

easily recognized by their perceptual properties as being the same mate-
rial—for example, paper and paper pulp, copper and molten copper, or a
muffin and muffin batter. Accordingly, judgments from six undergraduates
were used to choose the solid and nonsolid versions of the “same material”

that would appear to be the same material to observers. The resulting
stimuli consisted of translucent gel and translucent hardened plastic for one
set and off-white hand lotion and off-white hardened paint for the other. In
both cases, the materials were judged by adults to be the nonsolid and
hardened versions of the same material.

As shown in Figure 21, there were two exemplar objects. The exemplar
for one set, the Teema, was aV shape made out of translucent gel. The
exemplar for the other set, the Wazzle, was an irregularM shape made out
of hand lotion. For each exemplar, there was a set of shape matches made
out of three different nonsolid substances. For the Teema, the shape
matches were made out of wax, glitter, and Noxzema mixed with sand; for
the Wazzle, the shape matches were made out of green sand, toothpaste
with glitter, and shaving cream. For each exemplar, there were also three
sets of material matches: a same-solidity set and two types of cross-solidity
sets (natural shape and constructed shape). For the Teema, the same-
solidity material match consisted of shapes made out of translucent hair
gel, the cross-solidity–natural material match was a looseS shape made out
of translucent hard plastic, and the cross-solidity–constructed material
match was a squareS shape made out of the same translucent hard plastic.
For the Wazzle, the same-solidity material match consisted of shapes made
out of off-white hand lotion, the cross-solidity–natural material match was
a kidney shape made out of off-white hardened paint, and the cross-
solidity–constructed material match was an irregularT shape with straight
edges and sharp angles made out of the same off-white hardened paint.

Figure 18. Stimuli for Experiment 5.

366 COLUNGA AND SMITH



Procedure. The procedure was the same as that used in Experiment 5.
Each child was presented with the same-solidity, cross-solidity–natural,
and cross-solidity–constructed sets for the two exemplars. Each shape-
match/material-match pair was presented twice in random order for a total
of 12 trials. The children participated under one of two testing procedures.
Six children saw the trials blocked by exemplar (e.g., they saw all three sets
for the Teema and then all three sets for the Wazzle); the rest of the
children saw the trials blocked by condition with the same-solidity, cross-
solidity–natural, and cross-solidity–constructed sets counterbalanced. The
order of the sets was counterbalanced across participants; the position of
the choices was counterbalanced across trials.

Results and Discussion

Figure 22 shows the proportion of shape choices for the same-
solidity, cross-solidity–natural, and cross-solidity–constructed
sets. These proportions were submitted to a 2 (order: mixed or
blocked)� 3 (set: same-solidity, cross-solidity–natural, or cross-
solidity–constructed) mixed design. The analysis revealed only a

main effect of set,F(2, 34)� 4.202,p� .05. In the same-solidity
trials, contrary to the networks’ performances in Experiment 4,
children performed at chance level, choosing the shape match and
the material match equally often,t(17) � �0.437,p � .5. Al-
though 2- to 3-year-olds in other experiments have shown a
reliable material bias for nonsolids (Soja et al., 1991), there have
been other reports of chance-level performance (Imai & Gentner,
1997; Samuelson, 2002; Samuelson & Smith, 1999; Subrah-
manyam et al., 1999). The chance-level performance in the present
experiment is perhaps not unexpected given the relatively con-
structed nature of the shapes of the named exemplars.

In the cross-solidity–natural trials, as the network simulations
predicted, children also performed at chance level,t(17) � 1.236,
p� .2. That is, they did not extend the name of a nonsolid material
to its solid version, even when the shape cues were consistent with
nonsolidity. It is of interest that in the cross-solidity–constructed
trials, children’s performance was reversed—they chose the shape

Figure 19. Mean proportion of shape choices for the same-solidity and cross-solidity sets in Experiment 5
(solid exemplars). Error bars represent standard error.

Figure 20. Structure of the (a) same-solidity trials, (b) cross-solidity–natural-shape trials, and (c) cross-
solidity–constructed-shape trials. sol.� solidity.
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match more than expected by chance,t(17)� 2.287,p� .05. That
is, they grouped together two objects that matched in shape and
were both nonsolid (but different materials) rather than grouping
together two nonsolid things of the same material but different
solidity and different constructed shapes. There were no significant
effects of order,F(2, 34)� 2.212,p� .1. Notice, further, that in
no case did children reliably form categories containing both solid
and nonsolid things.

The difference between the cross-solidity–natural and the cross-
solidity–constructed sets suggests that the kind of shape a nonsolid
entity presents influences whether it is classified by shape or by
material. In a follow-up simulation study, we confirmed that this
was also true for the networks. In the previous simulation (Exper-
iment 4), we altered only the solidity pattern; thus, the shape
pattern remained one characteristic of nonsolid things. For these
new simulations, we added a test set like the cross-solidity–
constructed set; we switched the active unit in the solidity unit and
used a shape pattern that was consistent with a solid thing as
shown in Figure 22. These networks showed a material bias given
the traditional sets (mean proportion material choices� .60, which
differed from chance,p � .05), performed at chance level on the

cross-solidity trials given the simply shaped solids (mean propor-
tion shape choices� .52), but reliably chose the nonsolid shape
match on the cross-solidity trials when the material match was
complexly shaped (mean proportion� .68, p � .05). The net-
works, like the children, showed a preference for the same-solidity
shape match over the cross-solidity material match in the cross-
solidity–constructed trials but performed at chance level in the
cross-solidity–natural trials—trials that pitted a choice object with
a nonsolid material against one that was solid but had a shape
consistent with nonsolidity. Thus, the networks, like the children,
used the shape information as a cue to category structure.

Summary of Experiments 4–6

The early nouns that children learn contain multiple correlations
among solidity and among kind of shape (simple or constructed),
and moreover, these cues predict within-category similarities in
solidity, shape, and material. The correlations available in the early
noun corpus thus go beyond the generalizations that solid things
are categorized by shape and nonsolid things are categorized by
material. These three experiments demonstrated the existence of

Figure 21. The stimulus sets for Experiment 6 (nonsolid exemplars). A shape–same-solidity match was pitted
against three different kinds of material matches.
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those correlations and their influence on children’s novel noun
generalizations. The results indicate that there is not simply a rule
that shape matters for solids or that material matters for nonsolids.
Instead, children’s generalizations of a just-heard name for some
novel thing is a product of all of these correlations. The strongest
regularity in the present case is that solid and nonsolid things do
not get the same name. Thus, children’s novel noun generaliza-
tions are expected to show this bias even when other intercorre-
lated cues are put in conflict. We characterized this predicted
tendency to put solids and nonsolids in different categories as an
ontology bias, not because children’s (or networks’) judgments in
this task reflect a represented ontology in the usual sense, but to
underscore how higher order correlations in the early noun lexicon
could create performances that seem to be generated by beliefs
about fundamentally different kinds.

Cross-Linguistic and Syntactic Issues

If children’s attentional biases in the novel noun generalization
task are the product of correlations learned over the early lexicon,
then these biases should be universal to the degree that the struc-
ture of early lexicons is similar across languages and should be
different to the degree that the early lexicons differ. Past research
(Imai & Gentner, 1997; Kobayashi, 1997) has shown that chil-
dren’s novel noun generalizations exhibit both universal and
language-specific properties. In the next three experiments, we ask
whether we can explain both the universals and the differences
with our associative learning account.

Experiment 7

Imai and Gentner (1997) showed that both English-speaking and
Japanese-speaking children generalize names for solid and non-
solid things differently. We have shown that English-speaking

children’s performances in the novel noun generalization task are
explainable by the correlational structure of the early noun lexicon.
Can we also explain the biases shown in Japanese-speaking chil-
dren by the correlations presented by the early Japanese lexicon?
In this experiment, we begin answering this question by replicating
Samuelson and Smith’s (1999) analysis of the early English lexi-
con in Japanese.

Method

Participants. Sixteen adult native Japanese speakers participated in
this study. Ten participants made category organization judgments, and the
other 6 made judgments on solidity.
Stimuli. The nouns were selected from the Japanese Early Communi-

cative Development Inventory, which is a parental checklist used to mea-
sure children’s productive vocabulary. This checklist was developed from
independent and extensive study of the common words and phrases known
by children learning Japanese (Ogura & Watamaki, 1997; Ogura, Ya-
mashita, Murase, & Dale, 1993). The words in this list are known by 50%
of large samples of children at 30 months of age. Thus, the list is a good
proxy for the kinds of words commonly known by young Japanese-
speaking children. The object and substance terms on this list were spe-
cifically selected for this study. The nouns were selected following the
same criteria as in Experiment 2. There were 167 nouns on the list.
Procedure. We followed Samuelson and Smith’s (1999) procedure and

asked adults to make judgments about the perceptual properties character-
istic of the instances of each early noun category. For the solidity judg-
ments, 6 participants were asked to answer, for each of the words in the
vocabulary checklist, the following three questions:

1. Do items named by the word change shape when pressed?

2. Do they return to their original shape after being pressed?

3. Do they take the shape of their container?

Figure 22. Mean proportion of shape choices by the children on the three different conditions of Experiment
6. Error bars represent standard error. CS� cross-solidity.
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Each noun was then classified as referring to solid things if all three
questions were answered “no” or as referring to nonsolid things if all three
questions were answered “yes.” Nouns with any other pattern of answers,
which referred to things that were neither clearly solid nor clearly nonsolid
(e.g., playdough and shirt), were categorized as ambiguous.

For the within-category similarity or category structure judgments, 10
participants judged each of the nouns in the list. For each noun, they
answered the following questions:

1. Are the items in the category similar in shape?

2. Are they similar in color?

3. Are they similar in material?

Each noun was then classified as organized by shape if at least 70% of the
participants agreed that the things named by that noun were judged to be
similar in shape. A noun was classified as organized by material if
participants agreed that the things named by that word were similar in
material (and/or color). Note that each word could be classified as orga-
nized by shape, material, both, or neither. For comparison with English, we
used the original data from Samuelson and Smith (1999) with the same
criteria to select lexical categories of object and substance and the same
criteria to categorize individual nouns as solid, nonsolid, or neither and as
shape, material, both, or neither.

Results

The percentages of words of each kind—solid–shape, solid–
material, nonsolid–shape, and nonsolid–material—are shown in
Figure 23. In the following discussion, we compare the results of
this study with the corresponding English data shown in Figure 9.
As in English, the majority of the early Japanese nouns in this list
refer to solid objects (78% in Japanese, 75% in English), and there
are very few nouns for nonsolids (21 in Japanese, 24 in English) in
either list of early vocabulary items. In both languages, more
nouns were judged to refer to things similar in shape (58% in

Japanese, 59% in English) than to things similar in material and/or
color (15% in Japanese, 25% in English).

The correlations between solidity and category organization in
the early Japanese vocabulary were also similar to those found in
English. The correlation was very strong for solid and shape, with
most of the words that were classified as solid also judged to refer
to things that were similar in shape (96% in Japanese, 88% in
English) and most words that were classified as referring to things
similar in shape also were classified as solid (95% in Japanese,
93% in English). The correlation was weaker for nonsolid and
material. Whereas words that were classified as nonsolid were
judged to refer to things that were similar in material (90% in
Japanese, 84% in English), the correlation did not hold in the
opposite direction (46% in Japanese, 51% in English). Thus, as in
English, for the majority of early Japanese nouns, solidity and
within-category similarity agreed in a way consistent with the
shape and material biases, but not perfectly. The similarity of the
two early noun corpora is remarkable in its own right, a fact we
consider in the General Discussion. We know from Experiment 2
that these regularities are sufficient to create the shape and material
biases in English-speaking children. Are they sufficient across the
two languages to create both the similarities and the differences in
English- and Japanese-speaking children’s novel noun
generalizations?

Experiment 8

Imai and Gentner (1997) found both similarities and differences
in the way Japanese- or English-speaking children generalize
novel nouns. We show their results for 2-year-old Japanese- and
English-speaking children in Figure 24, the youngest children
showing cross-linguistic differences in their study. We concen-
trated on these children with the idea that these cross-linguistic
differences might be explainable solely by the correlations in the

Figure 23. Percentages of early Japanese nouns naming solid and nonsolid things judged by Japanese-speaking
adults to refer to things alike in shape, material, or both.
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noun lexicon. As Figure 24 shows, Japanese- and English-
speaking children generalized names in the same way given clear
cases of solid objects with constructed shapes or clear cases of
nonsolid substances in natural shapes, but they generalized names
for the simply shaped solids in different ways. For the English-
speaking children, solid things—both complexly and simply
shaped—were categorized by shape. For Japanese-speaking chil-
dren, simply shaped things—both solid and nonsolid—were more
likely to be categorized by material. To determine whether these
differences could be created by differences in the lexicons alone,
we trained networks with vocabularies modeled after the English
and the Japanese early nouns. The networks were tested on three

kinds of test patterns: solid with shapes typical of solid things
(complex shapes), nonsolids with shapes typical of nonsolids (sim-
ple shapes), and solids with shapes typical of nonsolids (simple
shapes).

Method

Architecture and training. The network architecture, training set, and
training procedure were the same as those used in Experiment 2 for the
English training set (except the networks were additionally tested on solids
with simple shapes). The same procedure used in Experiment 2 was used
to turn the regularities in the early Japanese lexicon into the Japanese
training set, as shown in Figure 25.

Figure 24. Two-year-old English- and Japanese-speaking children’s shape choices in the three stimulus
conditions from Imai and Gentner (1997).

Figure 25. The Japanese training set: Percentages of training categories of solid and nonsolid things that were
shape based, material based, or both.
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Testing. The testing procedure closely followed the procedure in Ex-
periment 2. Test trials were of three kinds: exemplars defined by patterns
of activation representing solid and complexly shaped things, solid and
simply shaped things, and nonsolid and simply shaped things. Shape
complexity was represented as in Experiment 2. The activation patterns
along the shape dimension of simply shaped solids or nonsolids were
drawn for a reduced space of possible shapes; they all had the shape that
was defined as characteristic of nonsolid shapes. Complexly shaped test
patterns were drawn from the unrestricted space. As in Experiment 2, on
each test trial, we created a novel exemplar object by randomly generating
an activation pattern along the shape and material dimensions and then
created shape and material matches by combining the exemplar’s shape
and material patterns with randomly generated material and shape patterns.

Results

The performances of the networks are shown in Figure 26 for
the Japanese training set and for the English training set. The light
bars show children’s proportion of shape choices; the dark bars
show the probability of choosing the shape match predicted by the
networks. These proportions of shape choices for each of the 10
networks for each language were submitted to a 3 (test set)
within-subject analysis of variance. The analysis of the Japanese
networks revealed a main effect of test set,F(1, 18) � 542.316,
p � .0001. The networks were more likely to choose the shape
match in the complex solid trials than in the simple solid or
nonsolid trials. In addition, the networks’ predictions were com-
pared against chance. For the complex solid trials, the Japanese
networks predicted more shape choices than expected by chance,
t(9) � 25.237,p � .0001; for the simple solid trials, their perfor-
mance did not significantly differ from chance,t(9) � �2.011,
p � .07, and for the nonsolid trials, the networks predicted less
shape choices than expected by chance,t(9) � �4.637,p� .001.
Eight of the 10 networks trained with categories modeled after
early Japanese nouns showed this pattern; 2 of the networks
developed shape biases for solid complex things but did not
develop reliable shape or material biases for simple solids or

nonsolids. Overall, then, the connectionist networks were success-
ful in qualitatively modeling the pattern of performance of the
2-year-old Japanese-speaking children in Imai and Gentner’s
(1997) experiment.

The analysis of the English networks revealed similar results.
There was a main effect of test set,F(1, 18)� 223.707,p� .0001.
The networks were more likely to choose the shape match on the
complex solid trials than on the simple solid or nonsolid trials. In
addition, the networks’ predictions were compared against chance.
For the complex solid trials, the networks predicted more shape
choices than expected by chance,t(9) � 8.315,p� .0001; for the
simple solid trials and for the nonsolid trials, the networks pre-
dicted less shape choices than expected by chance,t(9) �
�11.601,p � .0001, for simple solids andt(9) � �10.894,p �
.0001, for nonsolids. Unlike the English-speaking children, the
networks trained on the English-like vocabulary treated simple
solids like nonsolids and unlike complex solids. All of the 10
networks showed this pattern. Thus, the English-trained networks
yielded performances that fit the Japanese-speaking children’s
performances but not those of English-speaking children.

To explain the preferences of English-speaking children, we
need something in the English training that puts both complexly
shaped and simply shaped solid objects together and differentiates
them from nonsolids. The obvious place to look is count–mass
syntax.

Experiment 9

Can the regularities of English count–mass syntax alter the
networks’ development of learning biases and thus account for
children’s behavior in the case of simple solid objects? To pursue
this issue, we trained networks with the English-like vocabulary
used in the previous English simulations adding the correlated
syntax cues.

Figure 26. Mean proportion of shape choices by the networks trained on vocabularies incorporating the
regularities among early Japanese nouns compared with networks trained on the regularities among early English
nouns. Error bars represent standard error.
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Method

Procedure. To incorporate count–mass syntax into the networks’ train-
ing set, we used judgments made by three native English speakers. In
Samuelson and Smith’s (1999) study, participants were asked to give a
global judgment as to whether each noun was count, mass, neither, or both.
However, because we wanted to model young children’s performances, we
wanted a more surface-level measure of these cues’ correlations with
category structure. Accordingly, we asked three native English speakers to
answer four questions about each noun in the modeled set of English nouns
(the 149 nouns used in Experiment 2). Adults answered the following
questions for each of the nouns:

1. Cannot be used withmuchor less?

2. Can be used withmany, several, or numerals?

3. Has a plural form?

4. Can be preceded witha or an?

Each noun was classified as count if all four questions were answered
“yes,” as mass if all four questions were answered “no,” and otherwise as
ambiguous. The analysis of these judgments revealed that, indeed, almost
all solid, shape-based categories are named by count nouns (95%) and that
although most mass nouns do refer to material-based categories (91%),
only about half of the nonsolid, material-based categories are named by
mass nouns (47%).
Architecture. The networks used in this experiment had the same

architecture as that used in Experiment 2 except for an added syntax layer
as shown in Figure 27. The syntax layer had two units, one to represent
count syntax and one for mass syntax.
Training and testing. The networks were trained on the English vo-

cabulary of Experiment 8, incorporating the new count–mass syntax infor-
mation. Testing was done as in Experiment 8; there was no syntax infor-
mation given to the networks during testing.

Results

The results of the network simulations are shown in Figure 28.
The proportions of shape choices predicted by each of the 10

networks were submitted to a 3 (solidity) within-subject analysis
of variance. The analysis revealed a main effect of solidity,F(1,
18) � 306.211,p � .0001. The networks were more likely to
choose the shape match on the complex solid trials and on the
simple solid trials than on the nonsolid trials. Further, for the
complex solid trials and for the simple solid trials, the networks
predicted more shape choices than expected by chance,t(9) �
12.329,p� .0001, for complex solids;t(9) � 4.014,p� .003, for
simple solids. For the nonsolid trials, the networks predicted less
shape choices than expected by chance,t(9) � �27.375,p �
.0001. Nine of the 10 networks showed this pattern; 1 network did
not develop a shape bias for the simply shaped solids (and thus
showed a pattern similar to the networks trained without syntax).
Overall, then, the networks trained on the English-like vocabulary
with count–mass syntax information performed like English-
speaking children, treating simple solids like complex solids and
differently from nonsolids. Thus, the connectionist networks
trained on English with syntax were successful in modeling
English-speaking children’s behavior across the full range of
shapes. The results of this experiment suggest that English-
speaking children generalize names for simply shaped solid forms
by shape because their language (at least the part of their language
known to young children) often refers to simple solid forms using
the same syntax used to name complexly shaped solid things—
things overwhelmingly named by their shape.

Summary of Experiments 7–9

These final three experiments extend the associative learning
account to cross-linguistic similarities and differences. There are
three main results. First, the predicted relations between solidity–
nonsolidity and category structure in the early nouns were remark-
ably similar in both English and Japanese. Second, the statistical
regularities in the early noun lexicon were enough to explain the
similarities in English- and Japanese-speaking children’s novel
noun generalizations but not enough to explain the differences.
Third, the differences in Japanese- and English-speaking chil-
dren’s noun extensions appear to be created by the additional
correlations added by English count–mass syntax.

These results have implications for how we think about cross-
linguistic universals and differences. They suggest that some uni-
versals might be the product of similar learning environments. In
particular, Japanese- and English-speaking children’s novel noun
generalizations may be similar because both are products of gen-
eralizations over the nouns children know and because the nouns
children know in the two languages have similar category struc-
tures. The results also suggest that the processes that make uni-
versal and language-specific differences may sometimes be the
very same. That is, the underlying mechanism—associative learn-
ing and generalization by similarity—simulates both the similari-
ties and the differences.

Quine (1960) once famously proposed that count–mass syntax
actually created the abstract ideas of object and substance. Soja et
al. (1992) argued that this proposal was wrong because English-
speaking children generalized names for solids and nonsolids
differently before they mastered count–mass syntax. Imai and
Gentner (1997) also countered Quine by showing that Japanese-
speaking children who spoke a language without any correspond-
ing distinction also generalized names for solids and nonsolidsFigure 27. Architecture of the network used in Experiment 9.
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differently. However, consistent with perhaps the germ of Quine’s
proposal, count–mass syntax does influence how English speakers
categorize entities varying in their solidity and in their complexity
(and constructedness) of shape. In this way, the specific language
one learns does play a role in the development of distinct kinds.

However, the bigger lesson across the series of nine simulations
and behavioral experiments is perhaps this: The distinctions that
children make when generalizing a just-heard name for a single
novel thing may be explained as generalizations over a complex
pattern of correlations that include correlations among perceptual
properties, lexical category structure, and other aspects of lan-
guage. Within the reasonably large corpus of nouns that children
know at 2 to 3 years of age, these regularities create higher order
correlations that yield patterns of behavior suggestive of underly-
ing concepts about different kinds. The present results show that
these patterns may arise, at least in part, from no more than
associations among learned instances.

General Discussion

One of the most remarkable aspects of children’s early noun
learning is how good they are at it; they need to hear the name of
only a single instance to systematically generalize that name in
ways that seem correct to adults. This skill is all the more remark-
able because different kinds of things are organized into categories
by different properties. The fact that children extend names for
solid and nonsolid things in different ways thus suggests that they
know something about solids and nonsolids as different kinds. Our
starting question was how general processes of associative learn-
ing might contribute to this knowledge.

Associative learning is a good candidate for three reasons. First,
it is a reasonably well-understood mechanism that children are
known to possess. Second, it is a mechanism that is very good at
internalizing and generalizing from noisy statistical regularities.
Third, the nouns that children learn early present regularities that
could be responsible for children’s different name extensions for

solids and nonsolids. The results of the simulations and behavioral
experiments support this hypothesized role for learned associations
in creating expectations about the category structures of different
kinds. The simulations show that these general learning processes
are capable of creating a generalized distinction between solids
and nonsolids. Indeed, given the correlations in the early noun
lexicon, the networks generalized that learning in a manner con-
sistent with a rule that prohibits solids and nonsolids from being in
the same category, as if solids and nonsolids are fundamentally
different kinds. Young children show the same biases. The rulelike
behavior of the networks, however, is not the result of a repre-
sented rule. Instead, their generalizations are the product of con-
nection weights accrued over the pairings of names to specific
instances. Consequently, the networks’ generalizations are also
graded and context-sensitive, as are the generalizations of young
children. In what follows, we discuss the implications of these
findings for the nature, development, and origin of children’s
knowledge about different kinds and the relation of these ideas to
the theoretical constructs ofobjectandsubstance.

Origin of the Correlations

The networks, and by implication the children, develop expec-
tations about the category structures of solids and nonsolids as a
consequence of the statistical regularities among already learned
noun categories. This raises the theoretically potent question of
why young children know the particular nouns that they do and
why these nouns present the particular correlations they do. Why
is the category structure of early learned nouns so similar across
English and Japanese? It is interesting that it is not the case that
English- and Japanese-speaking children know the very same
lexical categories. The lists of early learned nouns—lists devel-
oped from large-scale normative studies of both languages—indi-
cate many differences in particular lexical categories. For example,
many of the nonsolid categories are food items, and there are many
differences between the two languages in food categories. Still, in

Figure 28. Mean proportion of shape choices predicted by the networks trained with additional count–mass
syntax information. Error bars represent standard error.
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both languages, names for solid things are more frequent than
names for nonsolids, and there are more shape-based categories
than material-based categories. Why do early vocabularies have
the structure that they do?

The nouns children know are the developmental product of the
nouns they hear and the internal biases that children bring to the
learning task. So it might be argued that the regularities that are
seen among early nouns are primarily the product of biases that
already exist in children rather than, as we propose, the result of
learning the early lexicon. We consider this issue, first taking a
narrow perspective that argues against preexisting biases by re-
viewing empirical evidence on the development of novel noun
generalizations and evidence on the nouns children hear. We then
take a broader perspective and consider the theoretically more
difficult question of why early noun vocabularies have the struc-
tures they do and what this means about the origins of distinctions
between kinds.

The extant evidence provides little support for the idea that the
shape and material biases precede word learning. Children do not
show evidence of the shape bias in the novel noun generalization
task until they know a considerable number of nouns (e.g., Sam-
uelson & Smith, 1999). Further, children’s earliest noun vocabu-
laries (under 25 nouns) show little evidence of solids being mostly
named by shape and nonsolids being mostly named by material
(Smith, 1995). Instead, these regularities emerge as early vocabu-
laries grow. Moreover, the nouns individual children know appear
to closely match the nouns they hear (Huttenlocher et al., 1991),
and the regularities among the nouns children know appear to
match well the regularities among the nouns they hear (Sandhofer
et al., 2001). Further, the data from the present experiments
strongly suggest that children learn the correlations they exploit in
the novel noun generalization task—the overarching one that solid
things are named by shape and nonsolid things by material, as well
as correlations concerning the constructedness of shape and, for
English-speakers, count–mass syntax. All of this evidence points
to children’s biases in the novel noun generalization task as prod-
ucts of the correlational structure of early noun categories rather
than the correlational structure of early vocabularies being the
product of internal biases.

However, there is potentially contradictory evidence to this
conclusion. Lucy (1992) presented evidence from speakers of
Yucatec Mayan that might be interpreted in terms of a shape bias
that is independent of lexical categories. Yucatec presents a rele-
vant case because nouns in this language do not refer to discrete,
countable entities as do English names; instead, all nouns in
Yucatec are quantificationally neutral, as are mass nouns in En-
glish. Sountz’ı́it kib is used to refer to one candle, withuntz’ı́it
meaning something like “one long thin” andkib typically trans-
lated as meaning “wax.” In everyday speech the classifier—one
long thin—is often omitted. Thus, this is a language that seems to
point to material categories with little attention to shape. Consis-
tent with this idea, adult speakers of Yucatec classify solid objects
by material. Given that the nouns in Yucatec refer to material-
based categories, this fact may be taken as support for the idea that
the lexical categories one learns create the distinctions one makes.
However, the developmental evidence from learners of Yucatec
suggests a strikingly contradictory conclusion. Speakers of Yu-
catec do not show a material bias for objects until they are older
than 9 years. Children between 7 and 9 years show a shape bias

(evidence from younger children has not been reported). This
could mean that children have a strong innate bias to categorize
solid objects by their shape and that it takes many years of learning
a contrary language to override this bias.

There is, however, an alternative account. In everyday usage,
Yucatec speakers use their nouns to refer to functional categories
of things; things referred to by the same name thus typically do
have the same shape (even though the noun means the material).
The early shape bias in Yucatec Mayan may reflect children’s
experiences with how nouns are actually used by speakers of the
language in everyday context. That is, the correlations that matter
for young children are not those that reside in the formal analysis
of the language as a whole; rather, the correlations that matter for
young children are those that exist between individual utterances
of nouns and the individual entities to which they refer. If in the
everyday lives of children learning Yucatec,kib and other nouns
are used to refer to objects with particular characteristic shapes,
then children will learn to attend to the shapes of objects. Perhaps,
after many years of learning their language and broader experi-
ences with nouns that include cases of these same nouns referring
to entities similar in material only, they may shift their attention to
material.

These arguments still leave unexplained the question of why
early nouns have the structure they do, why people (at least
statistically) refer to categories of solid things by shape and cate-
gories of nonsolid things by material. There are two likely causes.
One is the physical structure of the world. Solid things have
invariant shapes and invariant materials over movement and many
other transformations; in contrast, nonsolid things have transient
shapes but invariant material. It makes sense to refer to things by
their stable properties. In addition, there are, as a consequence of
physics, shape–propensity correlations and material–propensity
correlations. For example, certain kinds of shapes can with proper
movement swim more easily than other kinds, certain kinds of
shapes but not others afford carrying other things, and certain
kinds of materials but not others can soak up liquids. The second
likely cause is human psychology and biology. For example, the
visual system may be tuned to attend to the invariant and nonac-
cidental properties of rigid shapes (Biederman, 1987; Spelke,
1990; Wisniewski, Lamb, & Middleton, 2003). Further, and per-
haps more important, the property–propensity correlations in the
world are important to how people use and react to things in the
world. In particular, the functional properties of solid things may
depend mostly on their shape, whereas the functional properties of
nonsolid things may depend mostly on their material (see Gelman
& Bloom, 2000; Leyton, 1992; Samuelson & Smith, 2000). These
facts about the physical world and human psychology may create
the statistical regularities in the early noun lexicon. Languages
must, after all, evolve words that match human psychological
needs. But still, it may be the statistical regularities in the early
noun lexicon that create—via ordinary processes of associative
learning—children’s generalized expectations about the category
structures of different kinds.

A Web of Correlations

Although we began this article with the solidity–nonsolidity
distinction and although solidity is a strong predictor of category
structure, our full pattern of findings makes clear that children’s
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knowledge about different kinds is not simply knowledge about
the predictive relation between solidity and category structure.
Instead, it is also about the overlapping correlations among solid-
ity, the constructedness–complexity of shape, language, and lex-
ical category structure. Shape constructedness appears to play a
particularly strong role. This is predicted by our analysis of the
similarity space, that solid things can take more varied shapes,
including ones with many parts (and thus more evidence of their
nonaccidental nature), and by the correlations in the early lexicon.
Gelman and Bloom (2000) and Prasada et al. (2002) have also
argued on other grounds that nonaccidental shapes are crucial to
children’s and adults’ conceptualizations of artifactual objects as
being “designed” for some purpose. Although our results concern
children’s extension of category names by perceptual properties
(and not their reasoning about origins), they support the idea that
kind of shape is a crucial factor in children’s developing knowl-
edge about kinds.

Our results also show that syntax is part of the correlational mix.
In the early lexicon, the syntactic frames in which nouns are
presented correlate both with the perceptual properties of things
and with their category structure. Our simulations of Imai and
Gentner’s (1997) results illustrate how those correlated syntactic
cues interact with correlations between perceptual properties such
as solidity, kind of shape, and category structure. Our simulations
suggest that the count syntax correlations available to English
speakers push them to view simply shaped solids as more like
complexly shaped solids than like nonsolids. The implication is
that perceptual cues such as the deformation of shape when
touched (our definition of solidity in the adult judgments) have
more weight for English speakers than for Japanese speakers
because they correlate with syntax, whereas perceptual cues about
the constructedness of shape may have more weight for Japanese
speakers. This is a testable prediction for future work. The critical
point is that by our account, all of these factors—perceptual
properties, syntactic frame, and category structure—jointly and
through the same mechanisms create children’s generalized expec-
tations about how solid and nonsolid things are named.

Learned associations, like correlations, are bidirectional. Thus,
if solidity predicts shape categories, then shape categories predict
solidity, and if count-noun syntax predicts constructed shapes, then
constructedness of shape predicts count syntax. Our experiments
present some evidence for this bidirectionality in that the solidity
of the named entity predicts a category of instances of the same
solidity, as well as instances of the same shape, and constructed-
ness of shape predicts a category organized by shape. Hall (1996)
and Prasada et al. (2002) have also reported evidence of correla-
tions in both directions. Specifically, they reported that solidity,
constructedness of shape, and the category relevance of shape all
predict count-noun syntax. Bidirectionality is computationally im-
portant because it means that overlapping but noisy correlations
build on and mutually reinforce each other (see Yoshida & Smith,
2003a). Bidirectionality is developmentally important because it
means that cues codevelop. By such a model, attention to solidity
is not a prerequisite to learning about shape nor is learning about
shape a prerequisite to learning about solidity. Rather, the predic-
tive relation between the two and the increased attention that
predictive relation engenders will codevelop.

These ideas have relevance beyond the distinction between
categories of solid and nonsolid things. There are correlations in

the learning environment beyond those that partition solid and
nonsolid things. Recent studies of children’s categories (e.g.,
Lavin & Hall, 2001; Yoshida & Smith, 2003a, 2003c) as well as of
adults’ categories (e.g., McRae et al., 1997) suggest that correla-
tions between perceptual properties, actions, functions, and cate-
gory structure may underlie partitions between such different kinds
as foods, tools, vehicles, and animals. The present account sug-
gests that children should learn about these distinctions—and be
able to extend that learning to novel instances—as their noun
vocabularies expand and as these associations accrue. In brief, the
processes studied here may be relevant to explaining children’s
expectations about a wide variety of kinds. The power of these
potential explanations derives from the incorporation of multiple
and bidirectionally interconnected correlations of various
strengths. In the present case, we found that for English-speaking
children, solidity was correlated with kind of shape, with syntax,
and with category structure. Kind of shape, in turn, was correlated
with syntax, with category structure, and with solidity. Children’s
expectations, then, about the different kinds studied here are de-
pendent on a web of correlations among a number of properties of
language, of objects, and of object categories. This, we suggest,
may be the very nature of knowledge about different kinds.

The fact that the knowledge is at root correlational also means
that these global patterns will be context-sensitive, varying adap-
tively to meet specific tasks and the specific learning environment.
In this way, children’s knowledge about different kinds may be
characterized as a system of soft regularities, much as has been
proposed for English spelling to sound correspondences (e.g.,
Seidenberg & McClelland, 1989) or their knowledge of morphol-
ogy (e.g., McClelland & Patterson, 2002).

Networks and Children

All modeling is simplification, and the particular implications
that derive from our simulations depend on the significance placed
on connectionist modeling and, more broadly, on what one takes to
be the role of modeling in theory and experimentation. One could
take a narrow view and think of these networks as computational
devices that simply measure the regularities in their input. If so, the
contributions of the simulations lie in three areas. First, our sim-
ulations show that there are regularities among early lexical cate-
gories—perceptual information, syntactic information, and within-
category similarities—that are sufficient to create generalized
expectations about how to categorize even novel things. Second,
they provide a computational tool for generating predictions from
a complicated, messy, noisy mass of correlations. Finally, our
experiments with simple neural networks show the plausibility of
learning second-order generalizations from specific individual in-
stantiations of the first-order categories.

We prefer a broader view, that the assumptions about mecha-
nisms that underlie these simple statistical learners may also be
psychologically (and biologically) appropriate descriptions of the
learning process. According to this view, the simulations have
important implications for the origin, nature, and consequences of
children’s knowledge about naming solids and nonsolids. For
example, the associative learning account offers insights into how
children become “smart” word learners. The networks are general-
purpose learning devices. They begin with built-in sensitivities to
particular perceptual properties but with no prespecified biases to
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attend to some properties in particular contexts and to others in a
different context. However, with learning, the networks become
fine-tuned, internalizing the correlations present in their environ-
ment. A learner endowed with such ability would be very powerful
indeed, as it would be able to tweak itself and adapt to the language
learned and to the specific category at hand. This implies that as
long as there are regularities that can be exploited by the learner to
simplify its learning task, these regularities do not have to be
instantiated in the minds of learners prior to learning.

The assumptions behind the simulations also have implications
for explaining the developmental trend in the novel noun gener-
alization task. The theoretical work reported in this article is
admittedly limited in this regard as it focused on the statistical
match between the nouns known by 2- to 3-year-olds and their
novel noun generalizations. However, there are possible exten-
sions of the present account that may prove informative as to why
the developmental trend looks as it does. For example, the net-
works’ distinction between solids and nonsolids requires the for-
mation of higher order correlations between cues (perceptual prop-
erties such as solidity or syntactic frame) and category structure.
Category structure, in turn, is a lower order generalization over
associations between particular names (e.g., “ball”) and particular
specific things (e.g., a round rubber yellow ball, a wooden croquet
ball, or a large beach ball). It is interesting that the formation of
higher order correlations may depend systematically on the num-
ber and range of lower order correlations, and this may explain
why very young word learners (12- to 18-month-olds) conserva-
tively generalize novel names for novel things, restricting the name
to nearly identical things (e.g., Woodward et al., 1994), and it may
also explain why a generalized shape bias emerges sooner and
stronger than a generalized material bias. The dependence of these
higher order correlations on lower order lexical categories also
raises the question of whether and how lexical learning per se (vs.
other forms of category learning) might play a computationally
important role in children’s developing knowledge about kinds.
These ideas also need to be pursued in future work.

Associations and Concepts of Object and Substance

We have offered an explanation of children’s generalized ex-
pectations about how names map to categories of novel solid and
novel nonsolid things, suggesting that these expectations are the
product of a web of correlations and the higher order generaliza-
tions they afford, learned as children learn nouns. What does this
explanation—and the results that support it—imply about the
theoretical constructs of object and substance concepts? One pos-
sibility is that the theoretical constructs of object and substance are
merely summary terms for the kinds of associations studied here.
Correlational learning may underlie behaviors suggestive of a
psychological ontology, that is, representations that specify the
fundamental nature of different kinds. This seems particularly
plausible if the bundles of correlations that create mature knowl-
edge include more than the perceptual properties. McRae et al.
(1997) provided an example of this idea. They modeled adult
judgments of semantic relatedness with an associative theory in
which the features are perceptual properties (e.g., shape, moves on
own) and relational roles (e.g., used to carry water, friendly).
Extending the theory in this way may allow us to explain phenom-

ena generally interpreted as contrary to the associative learning
account.

For example, Prasada et al. (2002) cleverly showed that whether
adults construe an entity as an object or a substance depends
critically on their beliefs about the importance of shape rather than
on the perceptual property of the shape itself. Adults were pre-
sented with an accidental bloblike form. When they were presented
with several exact replications of that accidental shape, the adults
took the shape as nonaccidental and therefore important to the
lexical category. This result, at first glance, might be interpreted as
showing that adults’ reasoning about object and substance catego-
ries involves different mechanisms than the correlational learning
studied here, as we showed that accidental shapes are correlated
with material categories. However, the main difference may not be
the mechanism—or the nature of underlying knowledge—but in
the correlations. The correlational structure that generates adults’
judgments may include more than associations among solidity,
shape, and material; specifically, the correlational structure may
include associations among words, experiences with instances of
exactly the same shape, and means of manufacturing things. In-
deed, with development, concrete perceptual properties—such as
deformation of shape by touch—may become less important as
verbal descriptions, event structures, or function becomes the more
pervasive and thus more predictive cues. Nonetheless, if the un-
derlying knowledge is associative, then adults should still show
graded and context-sensitive patterns of judgments that are influ-
enced by solidity and constructedness of shape. The relevance of
these perceptual properties is expected to remain because these
correlations so strongly characterize a portion of the adult noun
lexicon, the early learned names for concrete objects and
substances.

A contrasting position can also be argued. Children’s novel
noun extensions for solids and nonsolids (and our associative
account of those data) may be only remotely connected to concepts
of object and substance. One starting point for this counterargu-
ment is that most of the data typically taken by others as indicating
object and substance concepts are not about solidity and nonso-
lidity but are, instead, about countability. That is, the object–
substance distinction is usually defined as being about whether an
entity is conceptualized as discrete and thus countable or whether
it is conceptualized as a continuous quantity (e.g., Gordon, 1985;
Lakoff & Johnson, 1980; Lenat & Guha, 1990; Pelletier, 1979). As
so defined, this distinction is important to reasoning about quan-
tities, to grammatical class in many languages, and to a variety of
inferences that one can make about different kinds. By this defi-
nition, objects may be solid or nonsolid (e.g., chairs and bubbles)
or even abstract (e.g., ideas), and substances may be solid, non-
solid, or abstract (e.g., wood, water, and justice). One real possi-
bility, then, is that children’s different name extensions for solids
and nonsolids in the novel noun generalization task—and the
knowledge and processes that underlie those performances—have
little to do with their understanding of what is countable or not.

Whereas children’s generalized expectations about naming sol-
ids and nonsolids may derive from learned associations, children’s
concepts of object and substance may have their origins in infants’
concepts of number. Indeed, recent work on infant number con-
cepts suggests that before word learning, infants distinguish cohe-
sive (typically solid) things and noncohesive (typically nonsolid)
things as countable versus noncountable (see Chiang & Wynn,
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2000; Feigenson, Carey, & Spelke, 2002; Huntley-Fenner et al.,
2002; Xu, 1997; see also van Marle & Scholl, 2003). Still, one
reason developmentalists have been so interested in children’s
different name extensions for solids and nonsolids is the likely
relevance of this distinction to concepts of object and substance.
Solidity seems an ideal expression of objectness in that solid things
are discrete with cohesive, bounded shapes. Likewise, nonsolidity
seems an ideal expression of substances because nonsolids are
noncohesive masses with stable materials but transient forms. It is
clear that an important theoretical problem to be resolved is the
relation between children’s use of perceptual cues to category
structure in the novel noun generalization task, infants’ attention to
the number of cohesive but not noncohesive things, and develop-
ing knowledge about objects and substances.

Conclusion

The idea that differences in correlational structure create peo-
ple’s knowledge about different kinds of things has been offered
by others. For example, Gelman (1988) and Keil (1989) argued
that the distributional patterns of correlated features differ across
artifacts and living things. McRae et al. (1997) provided evidence
showing that features within a single category of animate things
are more densely intercorrelated and less variable than features
within individual categories of inanimate things. Such correla-
tional differences have also been offered as explanations for
category-specific deficits in individuals with brain damage (Dev-
lin, Gonnerman, Andersen, & Seidenberg, 1998; Farah & McClel-
land, 1991). Patients have been described with deficits that suggest
distinct systems for animals, plants, artifacts, and also foods. It has
been suggested that these domains are neurally segregated because
they depend on different sets of intercorrelated properties. All of
these ideas clearly are consistent with the present demonstration
that correlated properties may create young children’s expectations
about how solids and nonsolids are named. However, the present
work goes beyond these prior suggestions in at least three ways.

First, we show that the correlational differences that characterize
individual categories create higher level correlations between cat-
egory structure and particular perceptual properties such as solidity
and type of shape. These higher level correlations, in turn, create
higher level categories that transcend the specific properties of
specific things. Thus, the learner has expectations about category
structure for things not yet encountered, that is, generalized ex-
pectations about solid and nonsolid things. Second, we place the
origins of these generalized expectations in the correlational struc-
tures of early learned noun categories. Third, we show how unbi-
ased learners become biased learners. The networks used in these
simulations use a simple local correlational learning rule. At the
start of learning, this is all the network has, and it is a relatively
unbiased learner. But with each word the network learns, it be-
comes more biased, developing expectations that are both increas-
ingly general and increasingly fine-tuned about the correlations
that matter for different kinds. The network as a whole, its corre-
lational learning rule, and its past learning are the model of the
learner. From this perspective, the learner and the learning process
change with each word learned. Thus, children may start with a
simple mechanism and as relatively unbiased learners. However,
through engagement with the world, learners become smart; they

know that there are different kinds of things in the world that are
categorized in different ways.
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Appendix A

Network Update Functions

The activation update rule used was the rule of the interactive activation
and competition model (McClelland & Rumelhart, 1986).

If hi
t � 0,

�ai
t � hi

t�ai
max � �ai

t � 1 � Diai
t � 1	
,

else

�ai
t � hi

t��ai
t � 1 � Diai

t � 1	 � ai
min],

whereai
t is the activation of uniti at timet; hi

t is the input to uniti at time
t; andai

max, ai
min, andDi are, respectively, the maximum activation, mini-

mum activation, and decay rate associated withi. All units in the network
currently have maximum activations of 1 and minimum activations of 0,
and the decay rate was set to .05 for all simulations.

The input to uniti at time t was calculated as

hi
t � �

j � 1

n

aj
t � wij , (8)

where n is the number of units in the network andwij is the weight
connecting unitsi and j.

The weight update function used was Contrastive Hebbian Learning
(Hopfield, 1982, 1984; Movellan, 1990),

�wij � phase *� * �ai � aj	, (9)

where phase is 1 during the clamped phase and�1 during the unclamped
or free phase,� is the learning rate or step size of weight change (.001 for
all networks), andai is the activation of uniti.

(Appendixes continue)
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Appendix B

Summary of the Architecture, Training, Test Sets, and Comparisons in the Simulations

Exp. Architecture Training set Testing set Comparison on test trials

1 12 shape units
12 material units
2 solidity units
24 word units
30 hidden layer units

12 solid–shape categories
12 nonsolid–material categories

40 novel instances of each of solid–shape,
nonsolid–shape, solid–material, and
nonsolid–material categories

Solid exemplar: solid shape vs. solid
material

Nonsolid exemplar: nonsolid
material vs. nonsolid shape

1A 12 shape units Same as above Same as above Same as above
12 material units
12 size units
12 location units
30 hidden units

2 Same as Exp. 1 Patterns in same proportions as
in English-speaking
children’s vocabularies

Same as Exp. 1 Same as Exp. 1

4 Same as Exp. 1 Same as Exp. 2 Same as Exp. 1 Cross-solidity sets
Solid exemplar: nonsolid shape

vs. solid material
Nonsolid exemplar: solid material

vs. nonsolid shape
6 Same as Exp. 1 Same as Exp. 2 Same as Exp. 1 All nonsolid exemplars (simple

shape)
Traditional set: simply shaped

nonsolid shape match vs.
simply shaped nonsolid
material match

Cross-solidity
Simple: simply shaped solid

material match vs. nonsolid
shape match

Complex: complexly shaped solid
material match vs. nonsolid
shape match

8 Same as Exp. 1 Patterns in same proportions as
in Japanese-speaking
children’s vocabularies

or
Same as in Exp. 2

40 novel instances of each of solid–
complex shape, nonsolid–complex
shape, solid–simple shape, nonsolid–
simple shape, solid–material, and
nonsolid–material categories

Complexly shaped solid exemplar:
solid–complex shape vs. solid–
material shape (randomly
generated shape)

Simply shaped solid exemplar:
solid–simple shape vs. solid–
material shape (randomly
generated shape)

Nonsolid (and thus simply shaped)
exemplar: nonsolid material vs.
nonsolid shape

9 Same as Exp. 1� 2
syntax units

Same as Exp. 2� syntax
correlations

Same as Exp. 8 Same as Exp. 8

Note. Exp. � experiment.
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