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From the Lexicon to Expectations About Kinds:
A Role for Associative Learning

Eliana Colunga Linda B. Smith
University of Colorado at Boulder Indiana University Bloomington

In the novel noun generalization task, 2 1/2-year-old children display generalized expectations about how
solid and nonsolid things are named, extending names for never-before-encountered solids by shape and
for never-before-encountered nonsolids by material. This distinction between solids and nonsolids has
been interpreted in terms of an ontological distinction between objects and substances. Nine simulations
and behavioral experiments tested the hypothesis that these expectations arise from the correlations
characterizing early learned noun categories. In the simulation studies, connectionist networks were
trained on noun vocabularies modeled after those of children. These networks formed generalized
expectations about solids and nonsolids that match children’s performances in the novel noun general-
ization task in the very different languages of English and Japanese. The simulations also generate new
predictions supported by new experiments with children. Implications are discussed in terms of children’s
development of distinctions between kinds of categories and in terms of the nature of this knowledge.

Concepts are hypothetical constructs, theoretical devices hyexplain the hypothetical constructs of object and substance nor do
pothesized to explain data, what people do, and what people sathey fully replace these constructs by explaining all of the data that
The question of whether a particular theory can explain children’shave been subsumed under them. Nonetheless, the results do show
concepts is therefore semantically strange because strictly speakew simple associative processes may create abstract distinctions
ing this question asks about an explanation of an explanation. Wabout different kinds and, in so doing, these processes may play a
begin with this reminder because the goal of the research reportectucial role in children’s category and lexical learning.
here is to understand the role of associative processes in children’s
systematic attention to the shape of solid things and to the material The Hypothesis
of nonsolid things in the task of forming new lexical categories. ) o )

These attentional biases have been interpreted in terms of chil- There is no doubt that associative mechanisms are part of
dren’s concepts about the ontological kinds aifject and sub- children’s psychology; howe\(er, there is.considergble dgbate about
stance(e.g., Dickinson, 1988; Imai & Gentner, 1997; Soja, Carey, the rqle of t_hese processes in early Iexncal_ Ie_arnlng, with most of
& Spelke, 1992; Subrahmanyam, Landau, & Gelman, lggg)jt_h(_e discussion _centered on whether associative processes are suf-
These concepts and the notion of a psychological ontology aréi¢ient to explain all of children’s progress in this domain (e.g.,
theoretical constructs offered within the framework that positsBloom, 2000; Golinkoff et al., 2000; Hollich et al., 2000; Jones,
propositional representations. Smith, & Landau, 1991). It seems highly unlikely that associative

In the simulations and experiments reported here, we show hogarming can explain it all, but it also seems highly likely that these
abstract distinctions about different kinds of categories may béleneral learning processes make important contributions to chil-
made through associative learning and the patterns of correlatiorf§€n's developing knowledge about lexical categories.
between the perceptual properties of things and words. The theo- One particular strength of associative learning is pattern match-

retical explanation we offer and the experiments we report do not'9: that is, internalizing the structure of the learning environment.
This is sometimes seen as a limitation, with the criticism being that

associative mechanisms output pretty much what is put in (e.g.,
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ing mechanisms is through the discovery of higher order general& Smith, 1999; Yoshida & Smith, in press). In this article, we
izations. In any reasonably complex environment, there are regueport evidence pertinent to this hypothesis.
larities at several levels of abstraction (see McRae, de Sa, & We propose the following: First, the early noun lexicon presents
Seidenberg, 1997; Yoshida & Smith, 2003b). If an associativeregularities between solidity, nonsolidity, and shape- versus
learning device can discover the higher order regularities, then itnaterial-based categories. Second, through general processes of
can form rulelike generalizations that transcend the specific propassociative learning, children internalize these regularities. Third,
erties of specific instances. These rulelike generalizations, in turrthese internalized regularities form a higher level distinction about
may characterize the nature of fundamentally different kinds. ~ solids and nonsolids as different kinds. This last prediction, that
We pursued these ideas by concentrating on children’s perforthese associations create abstract knowledge about different kinds,
mances in a widely used experimental task known as the novdrings us close to the idea that children’s performance in this task
noun generalization task. The skills that 2 1/2-year-olds show iriS related to their concepts of object and substance. We reserve
this task are remarkable precisely because the task itself providéliscussion of this issue to the General Discussion, concentrating
so little information and support. In the typical experiment, a childhere and in the experiments on the data to be explained—chil-
is shown a single object and told its name. From that informatiordrén’s attention to the shapes of solids and the materials of non-
alone, the child is asked to indicate the category to which the namg°lids in the novel noun generalization task.
applies by extending the name to other things. Moreover, the
typical experiment uses stimuli that are novel made-up things Background
labeled with novel made-up names such that there is little infor-

mation about the category to be formed. Nonetheless, with just this 1here is considerable evidence that the developmental roots of
little to go on, 2- to 3-year-old children form categories for solids these context-specific attentional shifts begin well before word

and nonsolids differently. When they are shown a single novef€arning. Infants discriminate among perceptual cues associated
e/vith solidity and nonsolidity (E. J. Gibson, Owsley, Walker, &

solid thing and told its name, 2- to 3-year-olds generalize thal _ h ; )
name to things that match the original in shape. But when they ard!€9aw-Nyce, 1979; Mash, Quinn, Dobson, & Narter, 1998;

shown a single novel nonsolid thing and told its name, same-aggpeltll(e’ Erelnllngeé, Macom?jer,s 8; Jacc()jbsor;,oéggz).h Morgozﬁr,t
children often extend the name to new instances that match ify ooy~ €nner, - Larey, an olimando  ( ) showe a

material (Colunga & Smith, 2003; Imai & Gentner, 1997; Soja et -month-old infants attend to the number of cohesive (typically
al., 1992) ’ ' ' ' solid) things but do not attend to the number of noncohesive

Other research has shown that children can use a variety cgypically nonsolid) things. These results indicate that infants not

kinds of information to guide category formation—information only are sensitive to the relevant perceptual cues for distinguishing

about function, about how the stimuli were made, and about rolegOIIds and nonsolids but also know something about their mean-

in complex events (e.g., Bloom, 1996: Booth & Waxman, 2002a,mng| correlations. Appar(_ently, hoyv_ever, thgse .early sensitivities

. are not enough to drive kind-specific attention in the novel noun
2002b; Diesendruck, Markson, & Bloom, 2003; Gathercole, Cra- eneralization task because well-differentiated attentional biases
mer, Somerville, & Haar, 1995; Gelman & Bloom, 2000; Kemler 9

) . . - for solids and nonsolids emerge only well after children have
Nelson, Frankenfield, Morris, & Blal_r, 2_000)' However, the evi- learned some names for solid and nonsolid things (e.g., Samuelson
dence from the novel noun generallgat.|on tasK shaws that 2', ) Smith, 1999). This last fact raises the possibility that the
3-_y§ar-old_ learners do not net_ad_ this mformatlo.n; rather, Quiteyiterent attentional biases for solids and nonsolids that are typi-
minimal stimulus cues about solidity appear to activate knowledg%a”y shown by 2- to 3-year-olds in the novel noun generalization

about different kinds and do so in a way that generalizes q,qy are 5 consequence of linking early perceptual sensitivities to
never-before-encountered things. ds.

wor

Several additional facts about this phenomenon are also rele- | this possibility is so, this developmental work also begins in
vant. First, what the experimenter says in the task critically deterinfancy. In one important study, Waxman and Markow (1995)
mines children’s performance. Children adaptively shift their at-gxamined 12-month-old infants’ ability to form categories in a
tention to different properties for different kinds when the famjjiarization paradigm. They presented infants with instances of
experimenter names (e.g., Landau, Smith, & Jones, 1988) thghe categoryanimal (e.g., bear, duck, lion, and dog) during a
objects or uses language associated with talking about kinds (e.gamiliarization phase and with novel within-category or out-of-
“another,” “same kind"; e.g., Diesendruck & Bloom, 2003). Chil- category instances during the test phase (e.g., cat vs. apple). A
dren do not systematically shift attention to different dimensionspovelty preference for the out-of-category instance was interpreted
when they are asked to group objects or to make similarity judgas evidence of categorization. The central result was that infants
ments. This indicates that it is not the stimulus properties alone thathowed this novelty preference only when the original instances
determine children’s attention to different properties. Rather, thehad been named during familiarization, a result that suggests that
language that defines the task also matters. Second, childreflaming directs attention to category-relevant properties.
younger than 2 years do not so clearly differentiate solids and In recent studies, Booth and Waxman (2003) suggested further
nonsolids, even in explicit naming tasks (Samuelson, 2002; Santhat by 14 months, children know something quite specific about
uelson & Smith, 1999). Moreover, the degree to which individualthe linguistic cues in English that are associated with noun cate-
children show these kind-specific shifts in attention appears to beories; they found that infants attend to object categories only
strongly related to the number of nouns known by that child, as ifgiven a word presented as a novel count noun (e.g., “a dax”) but
children learn the predictive relation between solidity and categorynot when presented as a novel adjective (e.g., “a daxy one”). These
structure as they learn early nouns (Samuelson, 2002; Samuelsoesults provide clear evidence of early learned links between
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linguistic cues and kind of lexical category. The knowledge shownsyntax increases attention to material, although these syntax effects
by infants in these tasks appears to be limited in two ways relativare stronger for nonsolids than solids and for older than younger
to that of 2- to 3-year-olds. First, there is no evidence to date thathildren (Soja, 1992; Subrahmanyam et al., 1999). Mass—count
infants differentiate noun categories into different kinds for solidssyntax is a property of English but not a property of all languages.
and nonsolids. Second, the experimental demonstrations with inFhese syntax effects thus raise the question of whether different
fants involve familiar categories and often presentations of multidlanguages—by offering perhaps different patterns of correlations
ple instances of the category. This is in contrast to older children’svith shape- and material-based categories—lead to different de-
attentional shifts that are evoked by the naming of a single noveVelopmental outcomes.
thing. Generalized expectations that differentiate different kinds Cross-linguistic studies have found both similarities and differ-
and apply broadly to unfamiliar things apparently develop later inences in children learning different languages, including languages
word learning. that differ in ways one may think should matter (Colunga & Smith,
Studies using the standard form of the novel noun generalizatio2004; Gathercole, 1997; Imai & Gentner, 1997). For example, both
task—naming a single novel thing with a novel name—uwith olderchildren learning English (which has mass—count syntax) and
infants also have suggested progressive development toward mocéildren learning Japanese (which does not have mass—count
abstract expectations about how nouns map to categories. One keyntax) attend to the shapes of solids more than nonsolids in the
study is by Woodward, Markman, and Fitzsimmons (1994). Theynovel noun generalization task (Imai & Gentner, 1997). However,
presented 13- and 18-month-old infants with a novel object, ahere have also been reports of cross-linguistic differences. In one
strainer, and named it with a novel name (“thisisa ____"). Theystudy, Imai and Gentner found that whereas 2 1/2-year-old
then tested the children’s learning in two comprehension tasks: onEnglish-speaking children generalized names for solids formed
in which the target object was identical to the original exemplarinto simple shapes by shape, same-age Japanese-speaking children
and one in which the target object was from the same adult lexicashowed no clear preference, generalizing names for simply shaped
category (also a strainer) and highly similar overall to the exemplasolids sometimes by material and sometimes by shape. Imai and
(different in color). In three out of four experiments, the 13-month- Gentner also found that the material bias for nonsolids appeared
olds systematically mapped the name to the identical object but naarlier and was more robust for Japanese-speaking children than
to the merely highly similar object. The 18-month-olds, in contrast,for English-speaking children (see also Kobayashi, 1997; Samuel-
more consistently mapped the name to the identical object and teon & Smith, 2000). There is even evidence that language may
the highly similar object. These results fit the idea that children dohave long-term effects; adult speakers of Japanese and Yucatec
not initially know the full range of instances that fall within noun Mayan (a language with material-based nouns) are more likely to
categories. attend to material than are adult speakers of English (Imai &
By 24 months of age, there is evidence of this sort of knowledgeGentner, 1997; Lucy & Gaskins, 2001).
for solid things but not so clearly for nonsolid things (e.g., Imai & To summarize, the developmental evidence suggests (a) an early
Gentner, 1997; Kobayashi, 1997; Landau et al., 1988; Samuelsosensitivity to the properties that distinguish solids and nonsolids;
& Smith, 1999; Soja, Carey, & Spelke, 1991; Subrahmanyam etb) an early sensitivity to words as indicators of categories; (c)
al., 1999). Given a single novel solid exemplar and told its namejncremental progress toward increasingly generalized expectations
2-year-olds reliably extend that name to instances that match iabout how nouns map to differently structured categories for solids
shape, even when these shape-matching instances differ dramatind nonsolids, with knowledge about solids developing earlier
cally from the exemplar in other properties (e.g., Samuelson &han knowledge about nonsolids; and (d) a possible role for lan-
Smith, 1999). The material bias for nonsolids is much weaker andjuage learning in this developmental trend. In light of this evi-
often not reliable at this age. In some studies 2-year-olds have beafence, we propose that associative learning is the mechanism that
reported to extend names for nonsolids by material (Soja, 1992akes infants’ discriminations of solids and nonsolids, their sensi-
Soja et al., 1991, 1992), but in others they have not, eithetivity to words, and their sensitivity to the structures of familiar
overgeneralizing the shape bias for solids to nonsolids (Samuelsonategories and transforms them into generalized expectations
2002; Samuelson & Smith, 1999; Subrahmanyam et al., 1999) oabout how even novel solid and nonsolid things are named. We
responding at chance levels (Imai & Gentner, 1997). All in all, thesuggest further that learning names for specific solid and nonsolid
evidence indicates that children’s knowledge of the predictivethings is the critically relevant experience. In other words, our
relation between solidity and category structure becomes stronggroposal is that 2- to 3-year-old children’s performances in the
between 2 and 3 years of age. novel noun generalization task are the product of generalizations
Other evidence indicates that children’'s name extensions imver the regularities that characterize the nouns they already know.
these tasks are influenced by syntactic cues, specifically thosBy this account, children may not show well-differentiated cate-
concerning the noun’s status as count or mass (e.g., Dickinsomories of novel solids and nonsolids earlier because doing so
1988; McPherson, 1991; Soja, 1992). In English, count nouns areequires having already learned a noun corpus that reliably shows
preceded bya or an and refer to discrete entities that can be these regularities.
counted (e.g., “a cup” or “an airplane”), and mass nouns are often Given this proposal, there are a number of testable predictions
preceded bysomeor muchand refer to continuous masses that that one might make. In what follows, we concentrate on predic-
cannot be counted (e.g., “some water” or “much cheese”). Oldetions that derive from two key ideas. First, the statistical regular-
children (3- and 4-year-olds) typically name solids with countities that characterize the nouns that 2- and 3-year-old children
nouns but often name nonsolids with mass nouns (see Gordotypically know should strongly predict these children’s category
1988; Hall, 1994; Levy, 1988). In novel noun generalization tasks formations in the novel noun generalization task. Second, the
count-noun syntax increases attention to shape, and mass-noumthematical function that predicts children’s performances from
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the statistical regularities in the early noun corpus should describeesents the relative number of nouns of that kind, and the size of

well-accepted ideas about associative learning and generalizatiaghe overlap between intersecting circles represents the relative
by similarity. number of nouns of both kinds. The circles in the left panel depict
the relative numbers of count nouns, names for solid things, and

Structure of the Lexicon names for categories organized by shape. The circles in the right

S | d Smith (1999 d evid . ﬁanel represent the relative numbers of mass nouns, names for
amuelson and Smith (1999) reported evidence pertinent _t onsolid substances, and names for things in categories organized

these predictions. They studied the regularities that (:haracterlzgy material. What Figure 1 shows is that many early nouns are
the corpus of nouns on the Macarthur Communicative Develop- .

. count nouns, many refer to solid objects, and many name objects
mental Inventpry (MCDI; Fenson et al., 1993). The MCDI is a in shape-based categories. Moreover, count nouns, solid things,
parent checklist of the early words and phrases commonly pro- L o .

. . and shape similarity go together, albeit imperfectly. The right
duced by 18- to 30-month-old children. The checklist was devel- L . .
. . R anel in Figure 1 shows that there are many fewer nouns in this

oped from extensive studies of parental diaries, in-laboratory test-

. ’ . . corpus that are mass nouns, name nonsolid things, and name
ing of early vocabularies, and large normative studies of the

instrument itself (Fenson et al., 1993). More specifically, thecategories organiz_ed by material, F_urther, nonsolidity, mass-noun
words included on the MCDI are those known by 50% of childrenSYNt@x, and material-based categories seem to go together, again,
at 30 months. Thus, the 312 nouns that are on the MCDI represeﬁowev_er’ imperfectly. F|gur.e. 1 also shows that there are many
a typical noun lexicon for 2- to 3-year-old children learning excgptlons to these r.egularltles. o
English. Elgure 1 could be interpreted as m(_]l!catmg that thg early nou_n
Samuelson and Smith (1999) examined the statistical regulari'-ex'con prese_nts the reIevant_reguIarltles and thl_Js is a potent_lal
ties presented by the categories in this corpus through the use ofSgUrce for children’s expectations about how solid and nonsolid
method pioneered by Rosch (1973a, 1973b). Adults were pret_hlngs are named. Alternatively, if one focusgg on the exceptions,
sented with each noun in the corpus and asked to think of commofne might con_clude that the relevant regularities are _too weak to
instances of the category. They were then asked a series of “ye&fcount for children’s knowledge. One way to determine whether
no” questions about the instances named by the noun: Are thedbe statistical properties of the early noun lexicon could possibly
similar in shape? Are these similar in color? Are these similar increate children’s generalized expectations is to present those reg-
material? Are these solid? Are these nonsolid? A separate group dfarities to an associative learning device and see just what is
adults was presented with criteria for distinguishing count and€arned. This was one of the main goals of the simulation studies
mass nouns and asked to judge whether each noun on the Mcat follow.
was a count noun, was a mass noun, or could be used in both There are, in addition to the regularities studied by Samuelson
syntactic frames (e.gcake. From these adult judgments, each and Smith (1999), properties of solid and nonsolid things that must
lexical item was designated as shape-based, color-based, materigp taken into account in any attempt to model the correlations
based, based on none of these properties, or based on any compresented by early noun categories. Most critical, solids and non-
nation of these properties. Each noun was also designated &slids differ in the kinds of shapes they can take. Solid things can
referring to solid or nonsolid things and as a count or mass nourke a variety of shapes, from broken, irregular pieces to highly
Individual nouns were designated as having these properties ifonstructed and multipart forms with right angles and parallel
85% of the adult judges agreed with the designation. sides. Nonsolid things, in contrast, can take a much more restricted
Figure 1 summarizes the key regularities in terms of Vennrange of shapes—flatter, rounder, and less constructed. Moreover,
diagrams. In these diagrams, the relative size of each circle repronsolid things in the world of children—for example, oatmeal,

Solid
ix. 1 '
x.x:éxlx !I‘x 5 > 4
Count .
Nz:ln,: Shape Material

Figure 1. Regularities in the early English lexicon, presented as Venn diagrams. Size of area indicates the
number of words for categories of solid things (left) and nonsolid things (right). ReprintedGognition, 73,

L. Samuelson and L. B. Smith, “Early Noun Vocabularies: Do Ontology, Category Structure and Syntax
Correspond?” p. 11. Copyright 1999, with permission from Elsevier.
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juice, and applesauce—hold their shapes for at best very brief A second learning problem concerns the graded and context-
periods of time and often transform into the accidental shapes odensitive nature of the correlations in the learning environment and
splatters and spills. All of this is relevant because shapes with rightvhether children’s knowledge is likewise graded and context-
angles and parallel sides suggest a “designed” form whereasensitive. The performances of 2- to 3-year-olds in the novel noun
shapes without these properties—for example, the splatter of oatgeneralization task seem rulelike; solids are named by shape, and
meal on the floor—appear accidental (see Biederman, 1987onsolids are named by material. But associative learners at best
Burger & Prasada 1997; Leyton, 1992; Prasada, Ferenz, &nimic rules (Marcus, 2001; Thornton, 2000). Thus, if children’s
Haskell, 2002). Further, Gelman and Bloom (2000) showed thatxpectations about how solid and nonsolid things derive from
both adults and children use cues about whether shapes are dearned associations, then children should show the signature
signed or not to make inferences about the relevance of shape taarkings of frequency dependency and context dependency. More
object categories. Recall, also, that Imai and Gentner (1997) foungpecifically, there should be a match between the statistical regu-
that shape complexity affected 2 1/2-year-old Japanese-speakingrities that characterize the nouns that children know and the
children’s performances in the novel noun generalization taskregularities that characterize their performances when they are
Thus, in addition to the lexical category regularities studied bygeneralizing a just-heard novel noun to new instances.
Samuelson and Smith, there are regularities generated by phys-

ics—solid things can hold highly complex shapes whereas non-

solid things cannot—and there is also evidence that these correla- Rationale

tions may matter to children. Accordingly, we took these

regularities into account in our simulations and provide evidence M the simulations and e_xperlr,nents that follow, we tested the
for their importance in the experiments with children as well. idea that 2- to 3-year-old children’s novel noun generalizations are,

at least in part, the product of the correlations that characterize
already learned nouns and also general processes of associative
learning. We provide three kinds of evidence. First, we show that

Could an associative learner given sensitivities to the shape" artificial gssociative learner (a connectionist n(_etwork), when
material, and solidity and also given training on the nouns thaPPresented with the same regularities that characterize early nouns,
label these things induce generalized expectations about how sol@EVelops generalized kind-specific attentional biases that are ap-
and nonsolid things are named? One possible limit on an affirmaPlied to never-before-experienced things, a shape bias for solids
tive answer to this question is the strength of the regularitiesand a material bias for nonsolids. This evidence demonstrates the
themselves. They may be too noisy, characterized by too mang)lausibility of the hypothesized mechanism. Second, we use the
exceptions, to generate the kind-specific generalizations that 2- tgonnectionist network to discover additional regularities in the
3-year-olds show. A second possible limit concerns associativé€arning environment, making and testing new predictions
learning mechanisms and whether an associative learner—evéipout children’s novel noun generalizations. In this way, we
given near perfect correlations in the noun lexicon—could develophow that the associative learning account is generative and has
attentional biases of the form showed by children. From an assdPredictive power. Finally, we show that this account offers a
ciative learning perspective, children’s generalized and king-unified explanation of both the overarching distinction between
specific attentional biases must arise from learning specific assgsolids and nonsolids and the history- and context-sensitive
ciations between individual words and individual instances, from,nature of children’s performances by applying the account to
for example, the pairing of a particular yellow ball with the word cross-linguistic data showing both similarities and differences
ball and the pairing of the orange juice one is drinking from ain the novel noun generalizations of English- and Japanese-
bottle with the wordjuice. But 2- to 3-year-olds’ expectations Speaking children.
about category structure are not expectations about specific things, We specifically concentrate on the nouns known by 2- to 3-year-
or even about specific categories suctbab or juice. Rather, they ~ 0lds and (with the exception of one experiment) on the perfor-
are higher order expectations about how different kinds of catemances of 2- to 3-year-olds in the novel noun generalization task.
gories are organized. We did this not because we believe this age is somehow special in

Knowing to categorize novel solid things by shape and novelthe developmental trajectory or because we believe that children’s
nonsolid things by material requires the learner to make a secondjeneralized expectations about solids and nonsolids appear all of a
order generalization (Smith, Colunga, & Yoshida, 2003) or over-sudden at this age. We did so because the literature suggests that
hypothesis (Goodman, 1955/1983; Shipley, 1993, 2000) that trarkind-specific attentional shifts in the novel noun generalization
scends particular objects, particular shapes, and particuldask are reliable at this age. Thus, we can strongly predict that the
categories. The critical correlation is not between cues, such agouns that 2- to 3-year-olds typically know should show the
being solid and being chair-shaped, but between cues and categomgquisite regularities. In taking this methodological approach, we
organization, between being solid and being in a category that igid not assume that the first 50 or first 100 or first 200 nouns are
organized by shape—whatever that shape may be—and betwee@tsent of the relevant correlations. Nor did we assume that signa-
being nonsolid and being in a category organized by material—tures of early learned correlations might not be evident in younger
whatever that material may be. Can these kinds of overhypotheseshildren. Rather, we concentrate on the match between the statis-
emerge through general processes of associative learning, prtieal properties of the nouns known by 2- to 3-year-olds and the
cesses that consist of the pairings between names and instances®/el noun generalizations of children this age as a first step in
This is the key learning problem addressed in the simulationexamining the possible role of associative learning in creating
studies that follow. expectations about the lexical category structure of different kinds.

The Learning Problem
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Before we proceed, it is also useful to make clear several Generalized Expectations From Learned Associations
additional untested assumptions and some assumptions that are not
being made. It is critical that we assumed that children’s cognitive Experiment 1
processes include associative learning and generalization by sim-
ilarity, processes we modeled with a Hebbian learning algorithm. The goal of this first experiment was to show that a simple
We did not assume that these are the only processes with whichssociative learner, taught names for individual things, can learn a
children are endowed or that these processes can necessariijape bias for categorizing solids and a material bias for catego-
explain all aspects of children’s cognition beyond their expectafizing nonsolids. This is a necessary first step because the ability
tions in the novel noun generalization task. Nor did we assume thaif ordinary networks to solve this task is not obvious. Connec-
the specific instantiation of associative learning that we used in théionist networks are simple associative learners, but the generali-
simulations would be an entirely accurate model of even children'gation required to yield a solidity—nonsolidity distinction like that
associative learning. However, we chose the particular modelingvident in 2- to 3-year-olds is not simple because it requires going
approach we did to make the most minimal and uncontroversiaffom simple associations between names and specific instances to
assumptions about the learning process. Thus, a more comple@®stract, rulelike generalizations. To do this, the learner—network
model of children’s associative learning and of their cognition inOF child—must go beyond specific experience at (at least) two
general is likely to include the processes used here. levels of abstraction. _ _ S

We also assumed that children begin word learning with well- Th_e first level of abstrfa\c_tlon or fl_rst-order generallzatlon is one
developed sensitivities to the relevant perceptual and linguistié®@dily made by associative devices and involves generalizing
cues—that is, to properties such as solidity, nonsolidity, and thdearned responses to new instances. For example, from the word

constructedness or accidental quality of shapes and to words Hall associated with several specific round things of variable color

segmented units. There is considerable evidence for these assunfjld Material and from the worgand associated with several

tions (E. J. Gibson et al., 1979; J. J. Gibson, 1979; Huntley-Fenne?pecmC heaps of a particular material and range of colors, the

et al., 2002; Mash et al., 1998; Spelke et al., 1992; Spelke &Iegrner may generalize the _na_rball to o_ther similarl;_/ round

Hespos, 2001); accordingly, our connectionist model incorporateg'"m:‘]s e_md _the namean_dto similar materials. These flrst-order_

these already developed abilities (see Roy & Pentland, 2002, for ﬁenerallzatlons are typically easy for networks as they readily
o . . ' ' ._learn correlational patterns among properties and labels (e.g.,

relat roach). The critical claim of the model is not that lexical ~ ™. " . .

elated approach). The critical claim of the model is not that le CaChrlstlansen&Chater, 2001; Farkas & Li, 2001; Moss, Hare, Day,

learning creates sensitivities to the properties of solidity and non:% Tyler, 1994: Regier & Carlson, 2001: Schyns, 1991).

lidi r to the dimensions of sh nd material rather th 4 . . '
solidity, or to the dimensions of shape and material, but rather tha Itis the second level of abstraction that gives rise to what can be

lexical learning creates a corpus of correlations between words : . .
. . . : . called overhypotheses and that is less clearly in the repertoire of
properties, and the dimensions that organize categories and that | o . )
: . o = . , simple associative networks. These higher order correlations con-
is the internalization of these regularities that creates children’s . . . .
rn the relevant dimension—the importance of shape in general,

: i . .
ggzggzililcljztehdinzépectatlons about categories of even novel solid ar}g/‘r example, rather than the importance of particular shapes.

In addit ithouah d that th icall Moreover, children’s generalizations reflect not one but two higher
n addition, although we assumed that the nouns typically, 4o correlational patterns: Children seem to know that solidity

known by 2- to 3-year-olds present the relevant correlations, W%ifnals the relevance of shape and nonsolidity signals the rele-

made no assumptions about why children learn these nouns rath@t e of material, even for objects and substances never encoun-
than other nouns. Past research has suggested that the nouygs.q pefore and shapes and materials never experienced before.
children know strongly reflect the nouns they hear (Huttenlocherirye apility of ordinary associative networks to simultaneously
Haight, Bryk, Seltzer, & Lyons, 1991) and that the nouns children|e, i ang generalize two such patterns has not been well studied.
hear present the same statistical regularities as the names thgy 5 prior effort, Samuelson (2002) attempted to teach a similar
know (Sandhofer, Smith, & Luo, 2001). Thus, the regularities wenetyork both a shape and a material bias, but it appeared to be
examined are likely to be those that characterize the learninganaple of learning only one at a time. Samuelson attempted to
environment. However, our assumptions are about the words chilnogel a particular training regimen, used to teach shape and
dren know; a corpus of lexical categories must be learned beforgaterial biases to very young children, children too young to show
the correlations within that lexicon can matter. In the Generaly shape or material bias on their own. The children, like the
Discussion, we return to the question of why the early nouns thahetwork, failed to learn two biases and acquired only the shape
children learn have the structure that they do. bias. Samuelson’s inability to teach the network two context-
Finally, the simulations model correlational learning and chil- dependent biases could reflect the training regimen or it could
dren’s generalizations from already learned nouns. The model wagflect a more general inability of this kind of network to simul-
not designed to describe how children learned those original noungineously form two context-dependent overhypotheses—that
in the first place. That is, the procedure we used to teach theghape similarity matters for solids but that material similarity
network a corpus of nouns (the pairings of names and specifignatters for nonsolids.
instances) does not adequately model the full complexity of the Accordingly, the goal of the first experiment was to investigate
learning environment and the learning process but does, we behe ability of a simple Hebbian network to form these higher level
lieve, adequately model the correlational structure that is part oforrelations. A Hebbian network learns by strengthening connec-
that learning environment and that is, by hypothesis, the basis dfon weights between units activated at the same time. Given this
children’s generalized expectations about the category structurdsrm of learning, the higher level correlations that seem to underlie
of solid versus nonsolid things. children’s novel noun generalizations would have to emerge from



KINDS FROM ASSOCIATIONS 353

the specific correlations among individual instances and theipattern along the whole layer, in a distributed fashion. Representing the
labels. The goal of the first experiment was to determine whetheperceptual properties of things in a distributed manner captures the graded
this learning was possible, given the best possible evidence thatmilarities of things within and between categories and in so doing enables
solid things are named by shape but nonsolid things are named Wneralization by similarity. Solidity is represented locally; there is one
material. unit that stands for solid and another unit that stands for nonsolid. We
Specifically, in this first experiment, the network was presemedrep_resent solidity categorically to capture the_ic_jea of what we take to be the
with a vocabulary that was unlike the one that children learn intha{rlaln perceptual contrast—that of the stability of shape when touched

. . . . (solid) versus the instability of shape (nonsolidity). The word layer is
it perfectly reflected the hypothesized regularity: Half of the train- . Lected recurrently to itself as is the perceptual layer.

ing categories were organized by shape, and half were organizedina)ly, there is a hidden layer that is connected to all of the other layers
by material; all of the shape-based categories consisted of solighd recurrently with itself. The word layer and the perceptual layer are
things, and all of the material-based categories consisted of nortonnected only through the hidden layer; there are no direct connections
solid things. If a simple Hebbian network categorizes novel thingsamong them. It is this last fact that makes this network different from a
by shape in the context of solidity but categorizes novel things bystandard Hopfield net. We chose this approach of an intervening hidden
material in the context of nonsolidity after learning this “perfect” layer so that the network could build internal representations that stand
training set, then we will have demonstrated that, in p,—incip|e’between the instanc_es (soli_d and non;olid things) and the nouns that label
children’s preferences in the novel noun generalization task couldrem. We were particularly interested in how these representations change

result from learning names for specific instances as a consequence of learning a vocabulary in which solidity predicts
' shape-based categories and nonsolidity predicts material-based categories.

Overview of simulations. The rationale behind the simulations is as
Method follows: First, we teach the network a vocabulary, in this case one that
perfectly represents a correlation between solid and shape-based and be-

field net. The network was trained using Contrastive Hebbian Learningt""(_e‘_en nonsolid anq mgterla_ll-based. We teach the network a vocabulary by
(Movellan, 1990), an algorithm that adjusts weights on the basis of correPaing “names” with individual “perceptual” patterns. Second, we test
lations between unit activations (see Appendix A). Figure 2 shows thdiow the network categorizes novel things. That is, after learning thI.S
architecture of the network. The network has a word layer in which words’0cabulary, does the network “know” to attend to the shape of a novel solid
are represented symbolically, that is, locally: Each unit in the word layerthing but to attend to the material of a novel nonsolid thing?
corresponds to one word. Training. The training set for the network consisted of 20 lexical
Individual entities are represented on the perceptual layer. Activatiorfategories. Half of these words, the solid—shape words, were paired with
patterns on this layer represent the solidity, shape, and material of eacfategories instantiating a solid—shape-based correlation, and the other half,
individual object or substance presented to the network. More specificallythe nonsolid-material words, were paired with categories instantiating a
the shape and the material of an object (say the roundness of a particul@@nsolid—material-based correlation. That is, each of the 10 solid-shape

ball and its yellow rubbery material) are represented by an activatiofwords was paired with individual instances of a category of things that
were solid and shared a value along the shape dimension, and each of the

10 nonsolid—material words was paired with individual instances of a
category of things that were nonsolid and shared a value along the material
Word Layer. dimension. During an epoch, the network was trained on each of the words
I I in the training set, paired with a randomly generated instance of that
category. Thus, the network saw as many different instances of each word
as the number of training epochs.

During training, a presentation of a word-instance pairing for the net-
work consisted of the simultaneous activation of a unit on the word layer,
a unit on the solidity layer, and shape and material patterns on the
perceptual layer. The specific training patterns used in this simulation were
generated in the following way. To make a solid—shape word, a unique unit

. in the word layer (name of the category) and the unit representing solid
Hidden Layer were activated together with a 12-bit binary number that was randomly
generated to represent the shape of the object, the core of the category
because it is a shape-based category. The value along the material dimen-
sion was left unspecified, to be determined randomly by the program as it
trained the network on each instance of the category. Thus, during each
presentation of a solid—shape word, the network learns associations among
the unit in the word layer, the unit representing solid, a particular shape
pattern, and variable material patterns. Examples of four instances of one
solid—shape word and of one nonsolid—material word are shown in

Architecture. We used a simple settling network, a variant of a Hop-

Figure 3.
Shape Material Solidity Patterns for. nonsolld—mgterlal V\./o.rds were generated analggously. Th.ese
patterns consisted of a unique unit in the word layer, the unit representing
Perceptual Layer nonsolid, a particular material pattern, and variable shape patterns. Thus,

during training, the network was presented with many instances of each
Figure 2. The perceptual layer represents the shape, material, and soliditword, but the instances of a given solid—shape word always shared the
of things. These are connected to the word layer through a recurrent hiddesame unique shape and had different materials, whereas the instances of a
layer. Although not indicated in the figure, the perceptual layer is alsoparticular nonsolid—material word always shared the same unique material
recurrently connected to itself, as is the word layer. and had different shapes.
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a) Solid-Shape b) Solid-Material

shape material shape material

ONTHTEN] EENTITIT]

Figure 3. Examples of patterns of instances for (a) one shape-based category and (b) one material-based
category. The activation pattern on the perceptual layer is represented by the shading of the units.

The networks were trained for 100 epochs, so over the complete trainingimilarity. If the network has learned the higher order correlations, then the
session, they were presented with a total of 100 instances for each of tH&® vectors for the exemplar and the shape match should be more similar
20 words in the training set. This duration of training was set on the a prioriwhen they are solid and the IR vectors for the exemplar and the material
assumption that by the age of 2 1/2 years, children have seen manyatch should be more similar when they are nonsolid. We simulated
instances of common categories of solid and nonsolid things. choices in a noun extension task by computing forced-choice probability

Testing. After learning a training vocabulary that presents a perfectusing these similarity measures and Luce’s choice rule (Rumelhart &
correlation between solidity and naming by shape and between nonsoliditiicClelland, 1986). The similarity measure (the absolute difference be-
and naming by material, does the network “know” to give a greater weighttween the two vectors) was normalized by subtracting each difference
to the shape than to the material of a novel solid thing but to give a greatevalue from the maximum difference found in the simulations. As per Luce
weight to the material than to the shape of a novel nonsolid thing? We(1963), the probability of choosing a particular test object was computed by
addressed this question by presenting the network with novel input patdividing the similarity of the IR vectors for that choice by the sum of the
terns—novel shapes and materials—and examining the resulting patterrsmilarity of the IR vectors for that choice and for the alternative choice.
of activations on the hidden layer. If the network has learned to highlightThat is, the probability of a shape choice was calculated as the similarity
information about shape in the context of solidity, then the pattern ofof the IR vectors of the shape-matching test object divided by the sum of
activation on the hidden layer given an input pattern marked as solid shoul¢he similarities of the IR vectors for the shape-matching and material-
represent mostly the shape information from the input pattern and not theénatching test objects.
material information. If, in addition, the network has learned to highlight The network was tested on 40 novel exemplars, each with four shape
information about material in the context of nonsolidity, then the pattern ofmatches and four material matches, for a total of 160 test trials. Half of
activation on the hidden layer given an input pattern marked as nonsolighese trials involved patterns of activation representing solid things and
should represent mostly the material information from the input pattern andhalf patterns representing nonsolid things. The 40 novel exemplar patterns
not the shape information. Thus, the patterns of activation on the hiddemsed in testing were randomly generated and thus stand in no systematic
layer for two solid things of the same shape but different material shouldrelation to the training exemplars. However, both the training and test sets
be highly similar. In contrast, the patterns of activation on the hidden layefvere randomly generated, and both sampled the entire space of possible
for two nonsolid things of the same material but different shape should bgnstances. As Marcus (2001) noted, a training set that covers the whole
highly similar (Smith, 1995; Smith, Gasser, & Sandhofer, 1997). space of possible instances may be crucial to enabling connectionist

Accordingly, each test trial consisted of presenting three input patnetworks to form broad generalizations.
terns—an exemplar, a shape match, and a material match—to the network Ten networks were trained (with 10 different randomly generated initial
and recording the activation pattern on the hidden layer after each of thesgynnection weights) as described above. Appendix A provides the equa-
patterns was presented and the network had settled. We call this pattefipns for the simulations, and Appendix B summarizes the architecture,

after settling the internal representation (IR) vector. The shape and materigfaining and testing sets, and the critical comparisons at test for this and for
matches used in testing were generated by selecting the pattern along thg remaining simulations in this article.

matched dimension in the exemplar (e.g., shape for the shape match,
material for the material match) and combining it with a different randomly
generated pattern along the other dimension (e.g., variable material patterf@esults and Discussion
for the shape match, variable shape patterns for the material match).

The structure of a test trial is shown in Figure 4. We first presented the The networks readily learned the words in the training vocab-
network with an input pattern corresponding to a novel exemplar and_ therﬂjlary. Figure 5 shows the networks’ performance during training,
recorded the IR vector. Then we presented the network with an inpujat s, their ability to correctly label new instances of the trained

pattern that presented the same shape but a different material (a ShaBStegories More specifically, Figure 5 shows the percentage of
match) and with an input pattern that presented the same material but a ) ’

different shape (a material match), recording the IR vectors for IDothllnstances_for which the correct unit in the word layer was af:t!vated
Finally, we calculated the similarity between the IR vector for the novel S @ function of number of passes (epochs) through the training set.
exemplar and the IR vector for its shape match and between the IR vectofhe networks reached ceiling performance after 20 passes through
for the novel exemplar and the IR vector for its material match. We usedhe training vocabulary. Thus, in subsequent simulations, the net-
the absolute value of the difference between the vectors as a measure wiorks were trained for only 32 epochs.
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Exemplar Shape Match Material Match
shape [N TINLTN[TN[] NRCINAL NN NN ,
material NENNNTITIT] BN EENEENTITIT]
IR (Exemplar) IR (Shape Match) IR (Material Match)

|
Sim( ,ﬁ; ) Sim(, )

Figure 4. Structure of a network’s test trial. The similarity (Sim) between the internal representations (IRs) of
the target pattern and its shape and material matches is used to predict probability of choice.

Figure 6 shows the proportion of shape choices in the simulategroportions of shape choices predicted for both solid and nonsolid
version of the novel noun generalization task before and aftetrials were not different from chanc&9) = —1.385,p = .2, for
training. Before training, the networks were unbiased; the differ-solids;t(9) = —1.022,p = .3, for nonsolids.
ence between the proportion of shape choices for solids and After training, the networks preferred the shape match for the
nonsolids was not significant(9) = 0.086,p > .9, and the solid exemplars and the material match for the nonsolid exemplars.
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Figure 5. Correct productions of the target word given a training instance during the training phase for the 10
networks. The thick line represents the average performance of the 10 netwerkspech.
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Figure 6. Mean proportion choices of the shape-matching test item by the networks for solid and nonsolid
patterns prior to training (e0) and after training (e100). Error bars represent standard efrepceh.

A pairedt test comparing the proportion of shape choices predictedh connectionist network that is taught only associations between
by the networks in solid trials versus nonsolid trials revealed thatspecific words and specific instances can show performance de-
after training, the difference was significanf9) = 12.105,p scribable as knowledge of a more abstract kind if the associations
< .0001. In addition, the proportion of shape choices predicted fopresent the higher order correlation: Solid things with the same
the solid trials was significantly greater than chari(®), = 5.425, name have the same shape, and nonsolid things with the same
p < .001, and for the nonsolid trials was significantly less thanname have the same material. This result suggests that, at least in
chancet(9) = —8.170,p < .0001. There was no such differential principle, it is possible to create a generalized distinction about
treatment for solids versus nonsolids in the networks before traindifferent kinds through associative learning. As far as we know,
ing. Eight of the 10 networks showed this pattern of shape choicethis is the first demonstration that simple connectionist networks
for the solids and material choices for the nonsolids (2 of thecan acquire context-specific second-order generalizations.
networks developed one of the biases but not the other). These One potential criticism of this demonstration is that the training
networks after training look like “idealized” children, with a strong sets were described to the network in terms of the potentially
shape bias for solids and a strong material bias for nonsolids. relevant properties—shape, material, and solidity. The inclusion of
It is critical that in these networks we know the processes thathese properties is justified by developmental evidence on infant’s
cause the different patterns of generalizations for solids and norsensitivities to them. However, the input to the network did not
solids. The different treatment of solid and nonsolid things resultsdescribe instances on a variety of other potentially irrelevant
from changes in the way the network represents solid and nonsoligroperties (e.g., size, color, or location). Thus, the network was
inputs. For solid inputs, shape is emphasized in the network'gresented with an easier task than children face. Of course, this is
internal representations, so the network’s representations of twtvue on many grounds. All modeling is simplification. We offer
patterns for solids that have the same shape but different materialvo arguments to support the simplification of describing the
are more similar to each other than are its representations of twimputs in terms of only the relevant properties. First, connectionist
patterns for solids of the same material but different shape. Thaetworks are adept pattern learners, well able to find the predictive
opposite is true for nonsolid inputs: The network’s representationselations and ignore the nonpredictive ones (see Thornton, 2000).
of nonsolids of the same material but different shape are mordo demonstrate this adeptness in the present case, we replicated
similar to each other than are the representations of nonsolids dhe simulations but added irrelevant variation, specifying each
the same shape but different material. input in terms of shape, material, “size,” and “location” such that
Figure 7 shows the effect of training on the network’s repre-the one relevant property (shape for solids, material for nonsolids)
sentations as the average distance (absolute difference) betweend¢Bmprised only 25% of the input pattern. In this set of simulations,
vectors for patterns representing solid things of the same shapéhe shape and material vectors were generated as described in the
solid things of the same material, nonsolid things of the samemain simulations. The size and location vectors were randomly
shape, and nonsolid things of the same material. In the network’'generated for each input and thus did not consistently predict
internal representations, solid things of the same shape but diffeicategory membership for solids or nonsolids. The results of this
ent material are more similar to one another than are solid thingsimulation were nearly identical to those reported above. Most
of the same material but different shape; nonsolid things of themportant, the networks still showed a generalized bias to represent
same material but different shape are more similar to each othehe shapes of solids but the materials of nonsolids. This replication,
than are nonsolids of the same shape but different material. Thusf course, does not prove the point as one could imagine schemes
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Figure 7. Raw similarity measures (absolute difference) for the internal representations (IRs) in Experiment 1.
Error bars represent standard error. sobolid; nsol= nonsolid; mat= material.

in which the relevant properties comprise a vanishingly smallconsidered three ways in which the correlations in Experiment 1
proportion of the input vector. However, given the ability of failed to match the correlations in the world.
associative engines to find predictive relations in noisy data, we First, the network in Experiment 1 was trained on an idealized
suspect such networks would still be successful. Second, and moxersion of children’s vocabularies such that all lexical categories
important in our view, theoretical descriptions of the training of solid things were organized by shape and all lexical categories
instances that emphasize solidity, nonsolidity, shape, and materiaf nonsolid things were organized my material. However, as
seem justified in terms of the developmental evidence that stronglyeported by Samuelson and Smith (1999), the correlational struc-
indicates children’s perceptual systems are highly sensitive tdure among the nouns that English-speaking children learn early is
these properties even before word learning (see, e.g., Bushnehpot that clean. There are a considerable number of early nouns that
1982; Bushnell & Boudreau, 1991; Mash et al., 1998). Children dodo not follow these rules. For example, according to the adult
not begin word learning with an infinite list of possible dimensions judgments collected by Samuelson and Smithbble names a
but rather—through their biology and through their interactionsnonsolid shape-based categ@sgapnames a solid material-based
with the world—have perceptual systems tuned to particularcategory; andail, key, andcrayonname categories for which both
dimensions. shape and material matter. Will a statistical learner be able to learn
the general rules in spite of these exceptions?
Experiment 2 Second, the network in Experiment 1 was trained on a corpus in
which half of the lexical categories were for solid things and half
Experiment 1 demonstrated that a simple associative learningzere for nonsolid things. In contrast, children typically know
device can form abstract generalizations about how different kindsnany more names for solid objects than for nonsolid substances.
are named. Or to be more specific, the networks can develofhis imbalance seems a likely factor in creating a shape bias that
connection weights that emphasize shape in the context of & more robust than the material bias. But are the few nonsolid
solidity cue but emphasize material in the context of a nonsoliditymaterial categories in this corpus enough for a simple neural
cue. We propose, however, that by taking seriously the details ofietwork to learn to attend to material in the context of nonsolids,
the correlations in children’s noun lexicons, we should be able toor will it overgeneralize attending to shape for both solids and
model the finer grained aspects of children’s preferences in th@onsolids?
novel noun generalization task, for example, the greater robustness Third, when the training patterns for the network in Experiment
of the shape bias for solids than the material bias for nonsolidsl were constructed, additional correlations that are the natural
However, there is also the possibility that when the network isproduct of differences between solids and nonsolids were not taken
given “messier” correlations, those correlations will not be stronginto account. In Experiment 1, the patterns representing shapes and
enough to support the overarching solid—nhonsolid distinction.materials for both solids and nonsolids did not differ in any
Thus, it is an open question whether a network trained on a morsystematic way. However, in the real world, solids can take a wide
realistic set of correlations will model children’s performance in range of shapes, from simple to complex and from accidental
the novel noun generalization task. In Experiment 2, we attemptegieces or flattened round shapes to ones with multiple parts,
to model children’s performance by using a more realistic trainingstraight edges, and sharp angles. In contrast, nonsolids can take a
set than the idealized one used in Experiment 1. We specificallynuch more restricted range of shapes, and these tend to be simpler
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than the shapes of solids. For example, wood can take the shape of 1. Do items named by the word change shape when pressed?
logs, blocks, chairs, or ladders, but sand (as opposed to the con-
tainer it is in) can take very few shapes. Being solid is thus less
predictive of the particular shape an individual entity will take, and
being nonsolid is more predictive. At the same time, shape is more

predictive of category membership for a solid thing, but shape iszach noun was then classified as referring to solid things if the three judges
less predictive of category membership for a nonsolid thing. Carinswered all three questions “no” or as referring to nonsolid things if all
a simple associative device find the correct higher level correlathree judges answered the three questions “yes.” Nouns with any other
tions given this added complexity? We addressed these issues prattern of answers were categorized as perceptually ambiguous.
Experiment 2 by creating a training set that mimicked these Figure 8 shows the relation between solidity—nonsolidity and category
properties: the imperfect correlations between solidity and catestructure in this early learned vocabulary of object and substance terms. It
gory structure, the lopsided nature of children’s early categorieds important that although adults judged most solid things to be categorized
with many more names for solid things than for nonsolid things,by shape, there were exceptions and complications; for example, muffins

and the correlation between nonsolidity and a restricted range of€"® judged to be _alike ir_1 l?oth_ shape and material, fand bubbles were
simpler shapes judged to be nonsolid but similar in shape. However, as is apparent, within

this corpus of nouns and by these methods, solids tend to be named by
shape, and nonsolids tend to be named by material.
Method The training set. The networks were trained on 24 categories that

All aspects of the architecture and the training and testing procedures iH\Stantiated the same regularities (and irregularities) evident in our analysis
Experiment 2 were identical to those used in Experiment 1. of early nouns. Figure 9 shows the percentage of nouns of each kind

The modeled vocabulary. The goal of the training phase was to put in (solid—_shape, solid—-material, nonsolid—shape, and nonsqlid—material) for
the network the vocabulary that a child brings into a novel noun general{he training set for the network. As one can see by comparing Figure 8 and
ization experiment. Accordingly, we first describe the structure of chil- Figure 9, the statistical regularities present in the larger corpus were present
dren’s early vocabulary of object and substance terms, the structure wi® the smaller training set.
attempted to mimic in the network’s training set. The training set was More specifically, the statistical regularities across the noun vocabular-
modeled on a set of 149 of the earliest learned object and substance nani€§ Were built into the network’s training set in the following way. First, for
(Fenson et al., 1993). We characterized the category structure of eac®fch word that the network was to be taught, a pattern was generated to
noun—its organization by shape or material—through the use of theepresent its value along the relevant dimension—the dimension on which
judgments collected by Samuelson and Smith (1999). In addition, for eaci@bjects named by that noun were judged to be similar. Second, at each
category we obtained judgments from three adults on the perceptual cud¥esentation of the word, the value along the irrelevant dimension was
indicating solidity. We did this rather than use adults’' characterizations ofvaried randomly. For example, the wabdll was judged to refer to things
things as simply “solid” and “nonsolid” (as in Samuelson & Smith, 1999) that are similar in shape; thus, a particular pattern of activation was
in order to model the correlations among the perceptual properties (and néandomly chosen and then assigned to represent ball-shape. All balls
the higher order notions of solidity—nonsolidity that might result from those presented to the network were defined as having this shape, although each
correlations). Accordingly, adults were asked for each noun to answer thball presented to the network also consisted of a unique and randomly

2. Do they return to their original shape after being pressed?

3. Do they take the shape of their container?

following three questions: generated pattern defining the material. So, each time the unit representing
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Figure 8. Percentages of early English nouns naming solid and nonsolid things judged by adults to refer to
things alike in shape, material, or both.
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Figure 9. Percentages of training categories of solid and nonsolid things that were shape based, material based,
or both.

the word ball was turned on during training, the pattern representingdifferent in shape, but instances of different nonsolid lexical categories
ball-shape was presented along the shape dimension, and a differemere not.
randomly generated pattern was presented along the material dimension.
Thus, all instances dfall shared the same shape pattern but had different
material patterns. Results

To implement the fact that solid things can hold more varied and
complex shapes than can nonsolid things, we assumed solid objects to have The networks readily learned the words in the training vocab-
a bigger range of values along the shape dimension than nonsolid sutary. Figure 10 shows the networks’ performance on the training
stances. Thus, instances of different solid lexical categories were verget as training progressed. Theaxis shows the percentage of
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Figure 10. Correct productions of the target word given a training instance during the training phase for the
10 networks in Experiment 2. The thick line represents the average performance of the 10 netwoemah.
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correctly labeled category instances; thaxis shows number of result contrasts sharply with the developmental evidence that in-
passes through the training set. The networks approached ceilindjcates that for children, the material bias emerges later than the
performance after eight passes through the training vocabulary. shape bias (Samuelson & Smith, 1999; Subrahmanyam et al.,
Figure 11 shows the proportion of shape choices in our simu41999).
lated version of the novel noun generalization task before training Why might a material bias for nonsolids preexist word learning
and after being trained for 32 epochs. A paitégelst comparing the in the present simulations but not in the experimental tests of
proportion of shape choices predicted by the networks on solichildren’s biases? The reason for this early material bias in the
trials versus nonsolid trials revealed that, after training, the differ-networks is evident when one looks at the networks’ internal
ence was significant(9) = 19.720,p < .0001. More specifically, representations. Figure 12 shows the average distance between IR
the trained connectionist networks showed a preference for shapectors for patterns representing solid things with the same shape,
matches for solids and a preference for material matches fosolid things of the same material, nonsolid things of the same
nonsolids. The proportion of shape choices predicted for the solighape, and nonsolid things of the same material before and after
trials was significantly greater than chand€) = 8.315,p < training. For solids, prior to training, instances that match in shape
.0001, and for the nonsolid trials was significantly less thanare not more similar to each other than are those that match in
chancet(9) = —23.595,p < .0001. That is, the networks were material. It is training that causes the shape of solid inputs to be
more likely to choose the shape match for a novel solid exemplaemphasized so that the network’s representations of two patterns
but were more likely to choose the material match for a novelfor solids that have the same shape but different material are more
nonsolid exemplar. All of the 10 networks showed this pattern,similar to each other than its representation of two patterns for
developing a shape bias for solids and a material bias fosolids of the same material but different shape. However, for
nonsolids. nonsolids, before training, the distance between IR vectors for
We also analyzed the proportion of shape choices predicted bpatterns that represent the same material but different shape is
the networks for the patterns of the testing set prior to training. Amuch smaller than the distance between IR vectors representing
pairedt test revealed a significant difference between the proporthe same shape but different material. The cause is straightforward.
tion of shape choices predicted for the solid trials and the shap&his greater similarity for nonsolids matching in material than for
choices predicted for the nonsolid triaif9) = 14.965,p0 < .0001.  nonsolids matching in shape results from the restricted range of
Comparing the networks’ predictions to chance revealed chancshapes that nonsolids can take.

performance on the solid trial$(9) = 0.168,p = .86, but a This assumption was built into the training set because it seemed
proportion of shape choices significantly less than predicted byto characterize a real difference between solid and nonsolid shapes
chance for nonsolid trial¢(9) = —14.419,p < .0001. In other inthe world and because it was unclear a priori whether this added

words, the shape bias was not there at the start for the networkspmplexity would help or hinder the formation of the two biases.
but it emerged as a consequence of learning. However, in contra#itis critical that if this characterization of the perceptual differ-
with the results in Experiment 1, these networks showed a materiances between the ranges of shapes of solid and nonsolid things is
bias for nonsolids before the stimuli had been trained at all. Thisorrect, then the simulations predict that children—like the net-
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Figure 11. Mean proportion choices of the shape-matching test item by the networks for solid and nonsolid
patterns prior to training (Epoch 0) and after training (Epoch 32) in Experiment 2. Error bars represent standard
error.
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Figure 12. Raw similarity measures for the internal representations (IRs) for the four kinds of test items in
Experiment 2. Error bars represent standard error=seblid; mat= material; nsol= nonsolid.

works—should have to learn a shape bias for solids but should Experiment 3

appear to generalize names for nonsolids by material from the start

if these materials are presented in the simpler and less constructedChildren younger than 30 months (between the ages of 18 and
shapes typical of nonsolids. This seems a strange prediction b&8 months) were selected for this experiment because the goal was
cause the existing evidence indicates a developmentally earlidp test the predictions of the networks prior to mastery of the
shape bias than a material bias (e.g., Samuelson, 2002; Samuels¢pcabulary used as the basis for the training sets for the networks,
& Smith, 1999; Subrahmanyam et al., 1999). One potentiallya vocabulary that by normative standards is known by 50% of
relevant factor is the nature of the shapes of the nonsolids in thd0-month-olds (Fenson et al., 1993). In this experiment, the chil-
simulations and in the experiments. The shapes of nonsolids in théren were presented with novel nonsolid materials either in the
simulations were relatively similar to each other on the assumptioypical roundish, irregular shapes of nonsolids or in the con-
that nonsolids naturally take accidental shapes that do not vargtructed, sharp-edged shapes more typical of solids.

greatly. Experiments with children have typically involved some-
what more constructed shapes. In one experiment, Soja et all?lethod
(1991) varied the constructedness of nonsolid shapes and found no

effect, but still their test sets were arranged such that the “uncon- Participants. Twelve children between the ages of 18 and 28 months
structed” shapes differed substantially from each other. At anywere recruited.

rate, the results of the simulations suggest the issue merits Stimuli and design. The shapes and materials used in this experiment
reexamination. are shown in Figure 13. The natural shapes were a round mound and a thick

If the predictions from the simulations are taken seriously, thereMear; the constructed shapes were a squarsdiape and a circle with a
slice cut out. The materials for one stimulus set were (a) Noxzema mixed

they suggest the following: First, when very young children (Whowith coarse brown sand and (b) shaving cream mixed with fine colored

do not yet know many names for solid and nonsolid things) AT€and. The materials for the second set were (a) toothpaste mixed with

given novel nonsolid things in the unconstructed shapes typical Ofjitter and (b) frosting. All children saw both a natural set and a constructed
nonsolids (splatters and smears), they will generalize names byet, To control for the saliency of different materials, we assigned half of
material. This is predicted not because these children know anythe children at random to judge the natural version contrasting Noxzema
thing about the importance of material for nonsolids but simplyand shaving cream and the constructed version contrasting toothpaste and
because the shape differences for these unconstructed solids dresting. The remaining children had the opposite assignment. The two
relatively small and thus the relative overall similarity between anyexemplars were presented in separate blocks. Each shape-match/material-
two nonsolids in accidental shapes will be determined mostly bymatch pair was presented four times, for a total of eight trials. The
material similarity. Second, when given nonsolid things in Con_mat_e‘rlals and orde_r of sets were counterbalanced across participants; the
structed shapes, very young children (who do not yet know man osition of the choices was counterbalanced across trials.

f lid d lid thi ill not attend t terial Procedure. The procedure used was a forced-choice task. The children
names for sofid and nonsoli ings) will not attend to materia were shown an exemplar (e.g., the Teema) and told its name (“This is the

because they have not yet developed a generalized expectation @ema”). The children were then presented with pairs of objects, a shape
name nonsolid things by material. This generalized expectationmatch and a material match, and were asked, “Can you show me the
like the generalized shape bias, must be learned from learningeema?” Children were allowed to touch the stimuli if they showed interest

names for things. We tested these predictions in Experiment 3. in doing so. If the shapes were distorted, the experimenter reformed them
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Natural Shapes .
P Materials
thick, rectangular smear toothpaste w/ glitter
frosting

round mound

Constructed Shapes

Noxzema w/ coarse sand

shaving cream

Figure 13. Stimuli for Experiment 3.

out of the children’s view before continuing with the experiment. Chil- Summary of Experiments 1-3

dren’s responses were coded as the first object they touched or to which

they pointed. The simulations in Experiments 1 and 2 demonstrated the mech-
anistic plausibility of the associative learning account, and the

Results results from the children in Experiment 3 provide support for our

Figure 14 shows the proportion of material choices for theassumption_s about the _shape regularities that characterize solids
natural and the constructed sets. Children were more likely td"‘m_j nonsolids. !n Experiments 1 and 2, we s_howed that networks
choose the material match when the nonsolid materials Werga'm_a(_j _On a biased vocabl_JIary be(_:omt_a blas_ed_. F_rom learning
presented in the shapes typical of nonsolids than when the nonsolRPecific instances of categories of solid things similar in shape and
materials were shaped into more angular and solid-looking shape§|,°'_3°'f'c instances of categories of nonsolid things similar in ma-
t(11) = 3.855,p < .01. Also, with the natural set, children were terl_al, the network learned to attend to the shapes of even novel
more likely to choose the material match than would be expecte&O“d things and to the materials of even novel nonsolid things.
by chancet(11) = 3.071,p < .01. However, in the constructed set, Moreover, Experiment 2 showed that the noisy regularities that
children’s choices did not differ from chand¢l1) = —1.483,p > characterize the early English noun corpus, imperfect as they are,
.1. This experiment shows that if the shapes used are the shapB®y be sufficient to create these more abstract generalizations.
typical of nonsolids, then young learners do form categories ofFinally, these experiments also highlight the value of simulations
nonsolids by material. However, this is not a generalized bias thaind the value of trying to take seriously the regularities in the early
extends to nonsolids in more constructed shapes. These resufigun corpus. The simulations in Experiment 2 with the assump-
suggest that the assumption about the different ranges of possibl@ns about the nature of the input led to a new prediction about an
shapes for solid and nonsolid materials may be right. That is, wittearly unlearned material bias for nonsolids in unconstructed
unconstructed nonsolids, the children show an early and perhaghapes. The findings not only support the prediction but also point
unlearned preference for material matches—just as the untraindd the importance of shape—constructed or unconstructed—in
network does. children’s category formation, a factor that some have taken to be
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Figure 14. Mean proportion of material choices by the children given nonsolid exemplars in natural and
constructed shapes. Error bars represent standard error.

essential to mature concepts of object and substance (Gelman different kinds that cannot be in the same category. We call the

Bloom, 2000; Prasada et al., 2002). hypothesized bias to restrict categories to items of the same solid-
ity the ontology bias because, like a hypothesized psychological
A New Prediction: The “Ontology” Bias ontology, such a bias would operate to divide entities into non-
) overlapping kinds.
Experiment 4 The rationale for our method to test this hypothesized bias is

One pervasive regularity in the early noun lexicon is that thingsc/arified by thinking about the typical way the shape bias for solids
that share the same name share the same solidity—for example, 4fid the material bias for nonsolids are measured in the novel noun
tables are solid, all juice is nonsolid, and all wood is solid. 9éneralization task. Figure 15a shows an example of a typical task
Although any material can, in principle, be solid or nonsolid tfial with solids. The child is shown a woodéhshape and told its
(depending on the temperature), names tend to not refer to cat@2me. The child is then asked to choose which of a wodden
gories that span the solid—nonsolid boundary. Thus, liquid water i$hape or a plastid shape would also be called by the same name.
“water,” but solid water is “ice.” This tendency is very strong in Thus, the child has to choose whether the name refers to the shape
early child vocabulary. In fact, it is true for all of the nouns in the (U shape) or the material (wood) of the named object. Notice that
early noun corpus except for oneegg which adults judged to in this case, the shape match is a match in both solidity and shape,
have both solid and nonsolid forms. If the networks and childrenand the material match is a match in both solidity and material. In
are learning these statistical regularities, then they should adhere tbe absence of a solidity mismatch, the evidence indicates that
this constraint in their novel noun generalizations. That is, afterchildren choose the shape match for a solid object. The question is,
training, the networks should act as if solids and nonsolids aréVill children still choose the shape match if it no longer matches

a) Solid Target b) Solid Target
shape match material match shape match material match
solidity match solidity match solidity mismatch  solidity match

Figure 15. Structure of the (a) same-solidity trials and (b) cross-solidity trials for solid targets.
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in solidity, if it violates the ontology bias? Figure 15b shows anand shape patterns, respectively. Again, the networks were tested on 40
example of a cross-solidity set. In contrast to the traditional samerovel exemplars, half of them defined as solid and half of them defined as
solidity sets, in the cross-solidity set the shape match is constructeepnsolid.

from a nonsolid material such as shaving cream, but the material

match is still the same, constructed of wood. Thus, the shape matca

is no longer a solidity match, but the material match is still both a esults
material and a solidity match. In this experiment, we tested this Figure 17 shows the proportion of shape choices predicted by

prediction with networks, and in the next two experiments with the networks for solid exemplar trials and for nonsolid exemplar
children. If the networks (and the children) have learned the P P

regularities in the lexicon involving solidity, and if learning these trlalz..t_These propt? rtl_gnibl‘or Zeachl_ dc.’f .the I.EO networksl_(ljn each
regularities creates overhypotheses or second-order generaliz%l‘-)n ition were submittedbta 2 (solidity: solid vs. nonsolid ex-

tions, then networks (and children) should be constrained to exten@MP1ar < 2 (set: same solidity vs. cross-solidity) mixed design.
names to other things of the same solidity. The analysis revealed a main effect of solidfy], 18)= 148.12,

p < .001; a main effect of seE(1, 18) = 13.98,p < .001; and a
Method reliable Solidityx Set interactionF(1, 18)= 58.13,p < .001. In
addition, the networks’ predictions were compared against chance.
Architecture and training. The network architecture, training set, and |n the same-solidity set condition, the networks predicted more
training procedure were the same as those used in Experiment 2. shape choices than expected by chance on the solid t(@)s=

T_estlng. The testing procedu_rg closely followed the procedure in Ex- 12.551,p < .001, and more material choices than expected by
periment 2. However, the specifics of the test patterns were changed to

make the cross-solidity test, as shown in Figure 16. The same-solidity triai¢hance on the nonsolid trial$(8) = —12.872,p < .001. In
were the same as in Experiment 2: Both the novel exemplar and the tw§0ntrast, on the cross-solidity trials, the networks predicted chance

test objects shared the same solidity (all three were solid or all three werperformancet(8) = 1.396,p = .2, for solids(8) = 1.717,p = .1,
nonsolid). In contrast, for the cross-solidity trials, the novel shape tesfor nonsolids. That is, when the exemplar was solid, the networks
match for solid exemplars was defined as nonsolid, and the novel materigiq longer preferred the shape match, and when the exemplar was
test match for nonsolid exemplars was defined as solid. Defining a patter?lonsolid, the networks no longer preferred the material match.

as solid or nonsolid simply meant activating the corresponding unit in th S .
solidity layer of the network. Thus, the only difference between the one of the individual networks showed a shape bias on the

same-solidity test patterns and the cross-solidity test patterns was th‘éross'sc’“d'ty trials given a solid exemplar, and none of the indi-
activation pattern along the solidity layer for the shape match in the case ofidual networks showed a material bias on the cross-solidity trials
solid trials and for the material match in the case of nonsolid trials—agiven a nonsolid exemplar. Thus, the pattern of generalization
difference of one bit. So, on the cross-solidity solid trials, we compared theobserved in Experiment 2 (and typical in experimental tests of
network’s preferences for a solid material match versus a nonsolid Shapéhildren) is now disrupted: The networks did not show a prefer-
match, and on the cross-solidity nonsolid trials, we compared the net\/\/ork’%nce for shape on solid trials and did not show a preference for
preferences for a nonsolid shape match versus a solid material match. . S . .
material on nonsolid trials. These trials break up the correlations

As in Experiment 2, on each test trial, a novel exemplar was created bﬁ L ; o
randomly generating an activation pattern along the shape and materid€tween within-category sameness in solidity and shape and

dimensions. Shape and material matches were created by combining tiithin-category sameness in nonsolidity and material, and in so
exemplar's shape and material patterns with randomly generated materigloing disrupt the shape bias and the material bias.

Solid Target

shape material

OETETEN] EEENTITIT] O

a) Same-solidity trials - Solid b) Cross-solidity trials - Non-solid

ﬁ shape material - shape material -
e o 0 ) (O [

ﬁﬂm]:l OTENTTITE I ﬁm (TETTTTE [

Figure 16. Representation of same-solidity (a) and cross-solidity (b) trials in the network. The only difference
between the same-solidity test patterns and the cross-solidity test patterns is the activation pattern along the
solidity layer for the shape match in the case of solid trials and for the material match in the case of nonsolid
trials.



KINDS FROM ASSOCIATIONS 365

M solid
O non-solid

o
2
A

proportion of shape choices
S
W

0.25

Same-Solidity Cross-Solidity

Figure 17. Proportion of shape choices predicted by the networks for the same-solidity and cross-solidity trials
given solid and nonsolid exemplars. Error bars represent standard error.

Experiment 5 counterbalanced across participants; the position of the choices was coun-
terbalanced across trials.
The question for this experiment was, Given a solid object, will
children refuse to generalize its name to an object of the samgyagits
shape if the test object is not solid? To test this question, we
created solid exemplars with specific shapes and then tested ob- Figure 19 shows the proportion of shape choices for the cross-
jects of the same shape out of different solid materials or out of solidity and same-solidity sets. A test revealed a significant
nonsolid material. We contrasted these shape-matching test objecl#fference between the proportion of shape choices in the two sets,
with ones that matched in solidity and material but differed in shapet(11) = —2.22,p < .05, indicating that the children attended to
shape more in the same-solidity set than in the cross-solidity set.
Method Cqmparisons to chance showed that on the traditional trials, the
children selected the shape match at levels above chance that
Participants. Twelve children between the ages of 30 and 36 monthsapproached conventional levels of significange<{ .10). Of the
participated. This age range was selected because the predictions derit@ children, 8 selected the shape match more than 75% of the time.
from the performance of the networks after training on a vocabularyOn the cross-solidity sets—when the exemplar and material
normatively known by 50% of children at 30 months. matches were solid but the shape match was nonsolid—the chil-
Stimuli. The stimuli for Experiment 5 are shown in Figure 18. There dren were reliably more likely than chance to pick the solid

were two exemplar objects. The exemplar for one set, the Teema, Was a - . : .
< .05).
shape covered with red coarsely grained paint. The exemplar for the othematerlal match p 05). That s, they appeared to actively avoid

set, the Wazzle, was an irreguldrshape made of (rigid) blue cheesecloth. the shape match if it mear.1t putting a nonsolid thing in the Sa_me
For each exemplar, there were three objects matching in material and twGA€gOry as the labeled solid exemplar. These results are consistent
sets of items matching in shape. The same-solidity set consisted of thre&ith @ bias in children to extend category names for solid things
solid objects that matched the exemplar in shape and differed in materig@nly to other solid things.

(e.g., metallic clay, Styrofoam covered with fur). The cross-solidity set

consisted of shape matches made out of nonsolid materials (e.g., shaving Experiment 6

cream, hair gel).

Procedure. The procedure used was a forced-choice task. The children D@ children extend names for nonsolid things only to other
were shown an exemplar (e.g., the Teema) and told its name (“This is thggnsolid things and not to things of the same material that are
Teema’). The children were then presented with pairs of objects, a shapg,iqo Figure 20 illustrates the three kinds of trials in Experiment
match and a material match, and were asked, "Can you show me thg_ Given a nonsolid target, a shape match (also nonsolid) could be

Teema?” Each child was presented with the same-solidity set of one itted inst lid terial tch lidity trial
exemplar and the cross-solidity set of the other. Half of the children werd)'t€ agglns (@) fi nonsoll ,ma er',a match (a same-solidi y_ r!a ),
) a solid material match in a simple shape (a cross-solidity—

assigned at random to judge the same-solidity version of one exemplar a
the cross-solidity version of the other. The two exemplars were presenteflatural-shape trial), or (c) a solid material in a constructed shape
in separate blocks. Each shape-match/material-match pair was presenttore consistent with a solid thing (a cross-solidity—constructed-
twice in random order for a total of 12 trials. The order of the sets wasshape trial).
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Shape Match
Exemplar Material Match

Cross-Solidity Same Solidity

a Noxzema n sponge
A lotion

<§: ;: blue clay
=
red sand paint sand burlap
red sand paint
pink felt with bumps toothpaste with glitte

w

|

S

=

blue cheese cloth

1 purple foam shaving cream
‘ green fur purple hair gel

Figure 18. Stimuli for Experiment 5.

blue cheese cloth

One key question is whether given a nonsolid exemplar, chilthat would appear to be the same material to observers. The resulting
dren will refuse to generalize its name to a material match if thestimuli consisted of translucent gel and translucent hardened plastic for one
test object is solid. A second question is the role of shape conset and off-white hand lotion and off-white hardened paint for the other. In
structedness in these extensions. If children’s expectations refle@0th cases, the materials were judged by adults to be the nonsolid and
the correlational structure in their vocabularies, then they shouldfardened versions of the same material. _
be more likely to choose the matching material when it is nonsolid, S SnoWn in Figure 21, there were two exemplar objects. The exemplar

. o g . . for one set, the Teema, wasVashape made out of translucent gel. The
(same-solidity condition) than when it is solid. Further, if they are exemplar for the other set, the Wazzle, was an ireglahape made out

sensitive to the correlation between k'nd of shape and Categc_)r)ff hand lotion. For each exemplar, there was a set of shape matches made
structure, then they should be more likely to choose the materighyt of three different nonsolid substances. For the Teema, the shape
match on the cross-solidity trials when the test object is solid butnatches were made out of wax, glitter, and Noxzema mixed with sand; for
shaped like a nonsolid (cross-solidity—natural condition) thanthe Wazzle, the shape matches were made out of green sand, toothpaste
when it is solid and is shaped like a solid (cross-solidity—with glitter, and shaving cream. For each exemplar, there were also three

constructed condition). sets of material matches: a same-solidity set and two types of cross-solidity
sets (natural shape and constructed shape). For the Teema, the same-
Method solidity material match consisted of shapes made out of translucent hair

gel, the cross-solidity—natural material match was a I&®skape made out

Participants. Eighteen children between the ages of 30 and 36 monthsof translucent hard plastic, and the cross-solidity—constructed material
participated in this study. match was a squai® shape made out of the same translucent hard plastic.

Stimuli. Many materials have solid and nonsolid forms that are not For the Wazzle, the same-solidity material match consisted of shapes made
easily recognized by their perceptual properties as being the same mateut of off-white hand lotion, the cross-solidity—natural material match was
rial—for example, paper and paper pulp, copper and molten copper, or a kidney shape made out of off-white hardened paint, and the cross-
muffin and muffin batter. Accordingly, judgments from six undergraduatessolidity—constructed material match was an irregilahape with straight
were used to choose the solid and nonsolid versions of the “same materia€dges and sharp angles made out of the same off-white hardened paint.
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Figure 19. Mean proportion of shape choices for the same-solidity and cross-solidity sets in Experiment 5
(solid exemplars). Error bars represent standard error.

Procedure. The procedure was the same as that used in Experiment 5main effect of setf(2, 34)= 4.202,p < .05. In the same-solidity
Each child was presented with the same-solidity, cross-solidity—naturalirigls, contrary to the networks’ performances in Experiment 4,
and cross-solidity—constructed sets for the two exemplars. Each shap%h"dren performed at chance level, choosing the shape match and
match/material-match pair was presented twice in random order for a tote¥he material match equally oftet(17) = —0.437,p > .5. Al-
of 12 trials. The children participated under one of two testing procedures; , S "

ugh 2- to 3-year-olds in other experiments have shown a

Six children saw the trials blocked by exemplar (e.g., they saw all three setgqc_’ . - ) !
for the Teema and then all three sets for the Wazzle); the rest of thé€liable material bias for nonsolids (Soja et al., 1991), there have

children saw the trials blocked by condition with the same-solidity, cross-been other reports of chance-level performance (Imai & Gentner,
solidity—natural, and cross-solidity—constructed sets counterbalanced. THE997; Samuelson, 2002; Samuelson & Smith, 1999; Subrah-
order of the sets was counterbalanced across participants; the position ﬁﬁanyam etal., 1999). The chance-level performance in the present

the choices was counterbalanced across trials. experiment is perhaps not unexpected given the relatively con-
. . structed nature of the shapes of the named exemplars.
Results and Discussion In the cross-solidity—natural trials, as the network simulations

Figure 22 shows the proportion of shape choices for the samedredicted, children also performed at chance le&) = 1.236,
solidity, cross-solidity—natural, and cross-solidity—constructedP > .2. That is, they did not extend the name of a nonsolid material

sets. These proportions were submittedat 2 (order: mixed or to its solid version, even when the shape cues were consistent with
blocked) X 3 (set: same-solidity, cross-solidity—natural, or cross-nonsolidity. It is of interest that in the cross-solidity—constructed
solidity—constructed) mixed design. The analysis revealed only drials, children’s performance was reversed—they chose the shape

Nonsolid Target

shape material sol.

ONTETEN] BT 0

a) Same-solidity b) Cross-solidity Natural ¢) Cross-solidity Constructed

U U

shape material  sol. shape material  sol. shape material  sol.

Figure 20. Structure of the (a) same-solidity trials, (b) cross-solidity—natural-shape trials, and (c) cross-
solidity—constructed-shape trials. sel. solidity.
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Material Match

Exemplar Shape Match Cross-Solidity
Same Solidity

Simple Shape Constructed Shape

shaving
cream
purple hair gel Noxzartia purple hair gel purple plastic purple plastic

wheateena

hand lotion

hand lotion clay + fabric paint clay + fabric paint

toothpaste

Figure 21. The stimulus sets for Experiment 6 (nonsolid exemplars). A shape—same-solidity match was pitted
against three different kinds of material matches.

match more than expected by chari¢®7) = 2.287,p < .05. That  cross-solidity trials given the simply shaped solids (mean propor-
is, they grouped together two objects that matched in shape antibn shape choices: .52), but reliably chose the nonsolid shape
were both nonsolid (but different materials) rather than groupingmatch on the cross-solidity trials when the material match was
together two nonsolid things of the same material but differentcomplexly shaped (mean proportien .68, p < .05). The net-
solidity and different constructed shapes. There were no significanworks, like the children, showed a preference for the same-solidity
effects of orderF(2, 34)= 2.212,p > .1. Notice, further, that in  shape match over the cross-solidity material match in the cross-
no case did children reliably form categories containing both solidsolidity—constructed trials but performed at chance level in the
and nonsolid things. cross-solidity—natural trials—trials that pitted a choice object with
The difference between the cross-solidity—natural and the crosst nonsolid material against one that was solid but had a shape
solidity—constructed sets suggests that the kind of shape a nonsol@nsistent with nonsolidity. Thus, the networks, like the children,
entity presents influences whether it is classified by shape or byised the shape information as a cue to category structure.
material. In a follow-up simulation study, we confirmed that this
was also true for the networks. In the previous simulation (Exper-
iment 4), we altered only the solidity pattern; thus, the shape
pattern remained one characteristic of nonsolid things. For these The early nouns that children learn contain multiple correlations
new simulations, we added a test set like the cross-solidity-among solidity and among kind of shape (simple or constructed),
constructed set; we switched the active unit in the solidity unit andand moreover, these cues predict within-category similarities in
used a shape pattern that was consistent with a solid thing asolidity, shape, and material. The correlations available in the early
shown in Figure 22. These networks showed a material bias givenoun corpus thus go beyond the generalizations that solid things
the traditional sets (mean proportion material choiee§0, which  are categorized by shape and nonsolid things are categorized by
differed from chancep < .05), performed at chance level on the material. These three experiments demonstrated the existence of

Summary of Experiments 4—6
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Figure 22. Mean proportion of shape choices by the children on the three different conditions of Experiment
6. Error bars represent standard error. €8ross-solidity.

those correlations and their influence on children’s novel nounchildren’s performances in the novel noun generalization task are
generalizations. The results indicate that there is not simply a rulexplainable by the correlational structure of the early noun lexicon.
that shape matters for solids or that material matters for nonsolidsCan we also explain the biases shown in Japanese-speaking chil-
Instead, children’s generalizations of a just-heard name for someren by the correlations presented by the early Japanese lexicon?
novel thing is a product of all of these correlations. The strongestn this experiment, we begin answering this question by replicating
regularity in the present case is that solid and nonsolid things d@amuelson and Smith’s (1999) analysis of the early English lexi-
not get the same name. Thus, children’s novel noun generalizason in Japanese.

tions are expected to show this bias even when other intercorre-

lated cues are put in conflict. We characterized this predicted

tendency to put solids and nonsolids in different categories as aMethod

ontology bias, not because children’s (or networks’) judgments in Participants. Sixteen adult native Japanese speakers participated in

this task reflect a'represented ontolqu 'r_] the usual sense, b_Ut ttﬂis study. Ten participants made category organization judgments, and the
underscore how higher order correlations in the early noun lexicoRer 6 made judgments on solidity.

could create performances that seem to be generated by beliefsstimuli. The nouns were selected from the Japanese Early Communi-

about fundamentally different kinds. cative Development Inventory, which is a parental checklist used to mea-
sure children’s productive vocabulary. This checklist was developed from
Cross-Linguistic and Syntactic Issues independent and extensive study of the common words and phrases known

by children learning Japanese (Ogura & Watamaki, 1997; Ogura, Ya-
If children’s attentional biases in the novel noun generalizationmashita, Murase, & Dale, 1993). The words in this list are known by 50%
task are the product of correlations learned over the early lexicorof large samples of children at 30 months of age. Thus, the list is a good
then these biases should be universal to the degree that the strygexy for the kinds of words commonly known by young Japanese-
ture of early lexicons is similar across languages and should bepeaking children. The object and substance terms on this list were spe-
different to the degree that the early lexicons differ. Past researchifically selected for this study. The nouns were selected following the
(Imai & Gentner, 1997; Kobayashi, 1997) has shown that chil-same criteria as in Experiment 2. There were 167 nouns on the list.
dren’s novel noun generalizations exhibit both universal and Procedure. We followed Samuelson and Smith's (1999) procedure and
language-specific properties. In the next three experiments, we aﬁg,ked adults to make judgments about the perceptual properties character-

whether we can explain both the universals and the differencel§ti¢ Of the instances of each early noun category. For the solidity judg-
. . - ments, 6 participants were asked to answer, for each of the words in the
with our associative learning account.

vocabulary checklist, the following three questions:

Experiment 7 1. Do items named by the word change shape when pressed?

Imai and Gentner (1997) showed that both English-speakingand  ,  pg they return to their original shape after being pressed?
Japanese-speaking children generalize names for solid and non-
solid things differently. We have shown that English-speaking 3. Do they take the shape of their container?
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Each noun was then classified as referring to solid things if all threeJapanese, 59% in English) than to things similar in material and/or
questions were answered “no” or as referring to nonsolid things if all threecolor (15% in Japanese, 25% in English).
questions were answered “yes.” Nouns with any other pattern of answers, The correlations between solidity and category organization in
which referred to things that were neither clearly solid nor clearly nonsolidthe early Japanese vocabulary were also similar to those found in
(e.g., playdough and shirt), were categorized as ambiguous. English. The correlation was very strong for solid and shape, with
For the within-category similarity or category structure judgments, 10most of the words that were classified as solid also judged to refer
participants judged each of the nouns in the list. For each noun, the¥ . o . o Judg o i
answered the following questions: (o] th_lngs that were similar in shape (9(_3_/0 in Japangse, 884) in
English) and most words that were classified as referring to things

1. Are the items in the category similar in shape? similar in shape also were classified as solid (95% in Japanese,
o 93% in English). The correlation was weaker for nonsolid and
2. Are they similar in color? material. Whereas words that were classified as nonsolid were

judged to refer to things that were similar in material (90% in
Japanese, 84% in English), the correlation did not hold in the

Each noun was then classified as organized by shape if at least 70% of ttRPPOSite direction (46% in Japanese, 51% in English). Thus, as in
participants agreed that the things named by that noun were judged to Henglish, for the majority of early Japanese nouns, solidity and
similar in shape. A noun was classified as organized by material ifwithin-category similarity agreed in a way consistent with the
participants agreed that the things named by that word were similar ishape and material biases, but not perfectly. The similarity of the
material (and/or color). Note that each word could be classified as orgatwo early noun corpora is remarkable in its own right, a fact we
nized by shape, material, both, or neither. For comparison with English, weonsider in the General Discussion. We know from Experiment 2
used the Or'?'”allde}ta Ifrom Sar_nuelsfonb_and S’g'th 8999) wuthdth;]a SaMenat these regularities are sufficient to create the shape and material
criteria to select lexical categories of object and substance and the sanjg, o jpy English-speaking children. Are they sufficient across the
criteria to categorize individual nouns as solid, nonsolid, or neither and a L . .

; . 0 languages to create both the similarities and the differences in
shape, material, both, or neither. . . . \

English- and Japanese-speaking children’s novel noun

generalizations?

3. Are they similar in material?

Results

The percentages of words of each kind—solid—shape, solid— Experiment 8

material, nonsolid—shape, and nonsolid—material—are shown in

Figure 23. In the following discussion, we compare the results of Imai and Gentner (1997) found both similarities and differences

this study with the corresponding English data shown in Figure 9in the way Japanese- or English-speaking children generalize
As in English, the majority of the early Japanese nouns in this lishovel nouns. We show their results for 2-year-old Japanese- and
refer to solid objects (78% in Japanese, 75% in English), and therEnglish-speaking children in Figure 24, the youngest children

are very few nouns for nonsolids (21 in Japanese, 24 in English) ishowing cross-linguistic differences in their study. We concen-

either list of early vocabulary items. In both languages, moretrated on these children with the idea that these cross-linguistic
nouns were judged to refer to things similar in shape (58% indifferences might be explainable solely by the correlations in the

100%

W solid
{4 non-solid

75%

56%

50% -

% words of each type

25% -

12%

2% 3%
0% - :
shape material both

Figure 23. Percentages of early Japanese nouns naming solid and nonsolid things judged by Japanese-speaking
adults to refer to things alike in shape, material, or both.
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Figure 24. Two-year-old English- and Japanese-speaking children’s shape choices in the three stimulus
conditions from Imai and Gentner (1997).

noun lexicon. As Figure 24 shows, Japanese- and Englishkinds of test patterns: solid with shapes typical of solid things
speaking children generalized names in the same way given clegcomplex shapes), nonsolids with shapes typical of nonsolids (sim-
cases of solid objects with constructed shapes or clear cases pfe shapes), and solids with shapes typical of nonsolids (simple
nonsolid substances in natural shapes, but they generalized nam&sapes).

for the simply shaped solids in different ways. For the English-

speaking children, solid things—both complexly and simply Method

shaped—were categorized by shape. For Japanese-speaking chil-

d imolv sh d thi both solid and lid Architecture and training. The network architecture, training set, and
ren, Simply shape Ings—Dboth solid and nonsolic—were rnor(?raining procedure were the same as those used in Experiment 2 for the

likely to be categorized by material. To determine whether thes%nglish training set (except the networks were additionally tested on solids

differences could be created by differences in the lexicons alon&yith simple shapes). The same procedure used in Experiment 2 was used
we trained networks with vocabularies modeled after the Englisho turn the regularities in the early Japanese lexicon into the Japanese

and the Japanese early nouns. The networks were tested on threaining set, as shown in Figure 25.
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75%
3
=

58%

S
s
S 50% A
]
St
<3
H
X

25%

17%
4%
0% - T
shape material both

Figure 25. The Japanese training set: Percentages of training categories of solid and nonsolid things that were
shape based, material based, or both.
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Testing. The testing procedure closely followed the procedure in Ex- nonsolids. Overall, then, the connectionist networks were success-
periment 2. Test trials were of three kinds: exemplars defined by patternfy| in qualitatively modeling the pattern of performance of the

of activation representing solid and complexly shaped things, solid ancﬁ-year-old Japanese-speaking children in Imai and Gentner's
simply shaped things, and nonsolid and simply shaped things. Shap§l997) experiment

complexity was represented as in Experiment 2. The activation pattern Th \vsis of the Enalish network led simil It
along the shape dimension of simply shaped solids or nonsolids were € analysis or the English networks revealed simiiar resufts.

drawn for a reduced space of possible shapes: they all had the shape thei€re was a main effect of test se{1, 18)= 223.707p < .0001.

was defined as characteristic of nonsolid shapes. Complexly shaped teshe networks were more likely to choose the shape match on the
patterns were drawn from the unrestricted space. As in Experiment 2, osomplex solid trials than on the simple solid or nonsolid trials. In
each test trial, we created a novel exemplar object by randomly generatingddition, the networks’ predictions were compared against chance.
an activation pattern along the shape and material dimensions and thgngy the complex solid trials, the networks predicted more shape

created shape and material matches by combining the exemplar’'s Sha%‘ﬁoices than expected by chant(8) = 8.315,p < .0001; for the

and material patterns with randomly generated material and shape patterns. . . . .
P ya Pep simple solid trials and for the nonsolid trials, the networks pre-

dicted less shape choices than expected by chat{eg, =
—11.601,p < .0001, for simple solids angf9) = —10.894,p <

The performances of the networks are shown in Figure 26 for0001, for nonsolids. Unlike the English-speaking children, the
the Japanese training set and for the English training set. The lightetworks trained on the English-like vocabulary treated simple
bars show children’s proportion of shape choices; the dark barsolids like nonsolids and unlike complex solids. All of the 10
show the probability of choosing the shape match predicted by thaetworks showed this pattern. Thus, the English-trained networks
networks. These proportions of shape choices for each of the 1f@ielded performances that fit the Japanese-speaking children’s
networks for each language were submitt@da 3 (test set) performances but not those of English-speaking children.
within-subject analysis of variance. The analysis of the Japanese To explain the preferences of English-speaking children, we
networks revealed a main effect of test $ef, 18) = 542.316, need something in the English training that puts both complexly
p < .0001. The networks were more likely to choose the shapghaped and simply shaped solid objects together and differentiates

match in the complex solid trials than in the simple solid or them from nonsolids. The obvious place to look is count-mass
nonsolid trials. In addition, the networks’ predictions were com-gyntax.

pared against chance. For the complex solid trials, the Japanese

networks predicted more shape choices than expected by chance,

t(9) = 25.237,p < .0001; for the simple solid trials, their perfor- Experiment 9

mance did not significantly differ from chancg9) = —2.011,

p = .07, and for the nonsolid trials, the networks predicted less Can the regularities of English count-mass syntax alter the
shape choices than expected by chat@,= —4.637,p = .001.  networks’ development of learning biases and thus account for
Eight of the 10 networks trained with categories modeled afterchildren’s behavior in the case of simple solid objects? To pursue
early Japanese nouns showed this pattern; 2 of the networkis issue, we trained networks with the English-like vocabulary
developed shape biases for solid complex things but did noused in the previous English simulations adding the correlated
develop reliable shape or material biases for simple solids osyntax cues.

Results
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Figure 26. Mean proportion of shape choices by the networks trained on vocabularies incorporating the
regularities among early Japanese nouns compared with networks trained on the regularities among early English
nouns. Error bars represent standard error.
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Method networks were submitted to a 3 (solidity) within-subject analysis
Proced Toi t ‘ tax into the networks' rai of variance. The analysis revealed a main effect of solidi,
rocedure. [o Incorporate count—mass syntax into the networks' train- 18) _ 306.211,p < .0001. The networks were more |Ik6|y to

ing set, we used judgments made by three native English speakers. [ . .
Samuelson and Smith’s (1999) study, participants were asked to give Qwoose the shape match on the complex solid trials and on the

global judgment as to whether each noun was count, mass, neither, or bothiMmple SOlld_ trlqls than on the n.onsolld t_nals_, Further, for the
However, because we wanted to model young children’s performances, we0mplex solid trials and for the simple solid trials, the networks
wanted a more surface-level measure of these cues’ correlations witpredicted more shape choices than expected by chaf®e=
category structure. Accordingly, we asked three native English speakers th2.329,p < .0001, for complex solidg(9) = 4.014,p = .003, for
answer four questions about each noun in the modeled set of English nousgmple solids. For the nonsolid trials, the networks predicted less
(the 149 nouns used in Experiment 2). Adults answered the followingshape choices than expected by char(®), = —27.375,p <
questions for each of the nouns: .0001. Nine of the 10 networks showed this pattern; 1 network did
not develop a shape bias for the simply shaped solids (and thus

1. Cannot be used witthuchor les® L - .
showed a pattern similar to the networks trained without syntax).

2. Can be used witmany severa) or numerals? Overall, then, the networks trained on the English-like vocabulary
with count-mass syntax information performed like English-
3. Has a plural form? speaking children, treating simple solids like complex solids and

differently from nonsolids. Thus, the connectionist networks
trained on English with syntax were successful in modeling

Each noun was classified as count if all four questions were answeregng“Sh'Speakmg Chlldren’s. behaVIQr across the full range _Of
“yes,” as mass if all four questions were answered “no,” and otherwise aSNapes. The results of this experiment suggest that English-
ambiguous. The analysis of these judgments revealed that, indeed, almc@€aking children generalize names for simply shaped solid forms
all solid, shape-based categories are named by count nouns (95%) and th¥t shape because their language (at least the part of their language
although most mass nouns do refer to material-based categories (919®nown to young children) often refers to simple solid forms using
only about half of the nonsolid, material-based categories are named bthe same syntax used to name complexly shaped solid things—

mass nouns (47%). things overwhelmingly named by their shape.
Architecture. The networks used in this experiment had the same

architecture as that used in Experiment 2 except for an added syntax layer .
as shown in Figure 27. The syntax layer had two units, one to represent Summary of Experiments 7-9

count syntax and one for mass syntax. Th final th . t tend th iative | .
Training and testing. The networks were trained on the English vo- ese Tinal three experiments exten € associative learning

cabulary of Experiment 8, incorporating the new count—-mass syntax infor&ccount t_o cross-llng_mstlc SImIIar!tles and c_jlfferences. Thert_—:' _are
mation. Testing was done as in Experiment 8; there was no syntax inforfnfée main results. First, the predicted relations between solidity—

4. Can be preceded wit@or an?

mation given to the networks during testing. nonsolidity and category structure in the early nouns were remark-
ably similar in both English and Japanese. Second, the statistical
Results regularities in the early noun lexicon were enough to explain the

similarities in English- and Japanese-speaking children’s novel

The results of the network simulations are shown in Figure 28,0y generalizations but not enough to explain the differences.
The proportions of shape choices predicted by each of the 18nijrqd, the differences in Japanese- and English-speaking chil-
dren’s noun extensions appear to be created by the additional

Word Layer correlations added by English count-mass syntax.

| J These results have implications for how we think about cross-

linguistic universals and differences. They suggest that some uni-
versals might be the product of similar learning environments. In
particular, Japanese- and English-speaking children’s novel noun
generalizations may be similar because both are products of gen-
eralizations over the nouns children know and because the nouns
children know in the two languages have similar category struc-

( Hidden Layer

tures. The results also suggest that the processes that make uni-
versal and language-specific differences may sometimes be the
very same. That is, the underlying mechanism—associative learn-

ing and generalization by similarity—simulates both the similari-
ties and the differences.
Syntax Quine (1960) once famously proposed that count—-mass syntax
actually created the abstract ideas of object and substance. Soja et
[I]]]I]]]] [[II[ al. (1992) argued that this proposal was wrong because English-
speaking children generalized names for solids and nonsolids
Shape Material ~ Solidity differently before they mastered count-mass syntax. Imai and
Perceptual Layer Gentner (1997) also countered Quine by showing that Japanese-

speaking children who spoke a language without any correspond-
Figure 27. Architecture of the network used in Experiment 9. ing distinction also generalized names for solids and nonsolids
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Figure 28. Mean proportion of shape choices predicted by the networks trained with additional count-mass
syntax information. Error bars represent standard error.

differently. However, consistent with perhaps the germ of Quine’ssolids and nonsolids. The results of the simulations and behavioral
proposal, count—-mass syntax does influence how English speakeexperiments support this hypothesized role for learned associations
categorize entities varying in their solidity and in their complexity in creating expectations about the category structures of different
(and constructedness) of shape. In this way, the specific languagends. The simulations show that these general learning processes
one learns does play a role in the development of distinct kinds.are capable of creating a generalized distinction between solids
However, the bigger lesson across the series of nine simulatiorasnd nonsolids. Indeed, given the correlations in the early noun
and behavioral experiments is perhaps this: The distinctions thdexicon, the networks generalized that learning in a manner con-
children make when generalizing a just-heard name for a singlsistent with a rule that prohibits solids and nonsolids from being in
novel thing may be explained as generalizations over a complethe same category, as if solids and nonsolids are fundamentally
pattern of correlations that include correlations among perceptudifferent kinds. Young children show the same biases. The rulelike
properties, lexical category structure, and other aspects of larbehavior of the networks, however, is not the result of a repre-
guage. Within the reasonably large corpus of nouns that childresented rule. Instead, their generalizations are the product of con-
know at 2 to 3 years of age, these regularities create higher orderection weights accrued over the pairings of names to specific
correlations that yield patterns of behavior suggestive of underlyinstances. Consequently, the networks’ generalizations are also
ing concepts about different kinds. The present results show thajraded and context-sensitive, as are the generalizations of young
these patterns may arise, at least in part, from no more thanhildren. In what follows, we discuss the implications of these

associations among learned instances. findings for the nature, development, and origin of children’s
knowledge about different kinds and the relation of these ideas to
General Discussion the theoretical constructs objectand substance

One of the most remarkable aspects of children’s early noun
learning is how good they are at it; they need to hear the name of
only a single instance to systematically generalize that name in The networks, and by implication the children, develop expec-
ways that seem correct to adults. This skill is all the more remarktations about the category structures of solids and nonsolids as a
able because different kinds of things are organized into categoriesonsequence of the statistical regularities among already learned
by different properties. The fact that children extend names fomoun categories. This raises the theoretically potent question of
solid and nonsolid things in different ways thus suggests that theyhy young children know the particular nouns that they do and
know something about solids and nonsolids as different kinds. Ouwhy these nouns present the particular correlations they do. Why
starting question was how general processes of associative learis-the category structure of early learned nouns so similar across
ing might contribute to this knowledge. English and Japanese? It is interesting that it is not the case that

Associative learning is a good candidate for three reasons. FirsEnglish- and Japanese-speaking children know the very same
it is a reasonably well-understood mechanism that children ardéexical categories. The lists of early learned nouns—lists devel-
known to possess. Second, it is a mechanism that is very good aped from large-scale normative studies of both languages—indi-
internalizing and generalizing from noisy statistical regularities.cate many differences in particular lexical categories. For example,
Third, the nouns that children learn early present regularities thatnany of the nonsolid categories are food items, and there are many
could be responsible for children’s different name extensions fodifferences between the two languages in food categories. Still, in

Origin of the Correlations
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both languages, names for solid things are more frequent thafevidence from younger children has not been reported). This
names for nonsolids, and there are more shape-based categormsild mean that children have a strong innate bias to categorize
than material-based categories. Why do early vocabularies haveolid objects by their shape and that it takes many years of learning
the structure that they do? a contrary language to override this bias.

The nouns children know are the developmental product of the There is, however, an alternative account. In everyday usage,
nouns they hear and the internal biases that children bring to th¥ucatec speakers use their nouns to refer to functional categories
learning task. So it might be argued that the regularities that aref things; things referred to by the same name thus typically do
seen among early nouns are primarily the product of biases thdtave the same shape (even though the noun means the material).
already exist in children rather than, as we propose, the result ofhe early shape bias in Yucatec Mayan may reflect children’s
learning the early lexicon. We consider this issue, first taking aexperiences with how nouns are actually used by speakers of the
narrow perspective that argues against preexisting biases by réanguage in everyday context. That is, the correlations that matter
viewing empirical evidence on the development of novel nounfor young children are not those that reside in the formal analysis
generalizations and evidence on the nouns children hear. We thef the language as a whole; rather, the correlations that matter for
take a broader perspective and consider the theoretically mongoung children are those that exist between individual utterances
difficult question of why early noun vocabularies have the struc-of nouns and the individual entities to which they refer. If in the
tures they do and what this means about the origins of distinctionsveryday lives of children learning Yucatddb and other nouns
between kinds. are used to refer to objects with particular characteristic shapes,

The extant evidence provides little support for the idea that thehen children will learn to attend to the shapes of objects. Perhaps,
shape and material biases precede word learning. Children do nafter many years of learning their language and broader experi-
show evidence of the shape bias in the novel noun generalizatioeances with nouns that include cases of these same nouns referring
task until they know a considerable number of nouns (e.g., Samto entities similar in material only, they may shift their attention to
uelson & Smith, 1999). Further, children’s earliest noun vocabu-material.
laries (under 25 nouns) show little evidence of solids being mostly These arguments still leave unexplained the question of why
named by shape and nonsolids being mostly named by materigarly nouns have the structure they do, why people (at least
(Smith, 1995). Instead, these regularities emerge as early vocabatatistically) refer to categories of solid things by shape and cate-
laries grow. Moreover, the nouns individual children know appeargories of nonsolid things by material. There are two likely causes.
to closely match the nouns they hear (Huttenlocher et al., 1991)0One is the physical structure of the world. Solid things have
and the regularities among the nouns children know appear tvariant shapes and invariant materials over movement and many
match well the regularities among the nouns they hear (Sandhofather transformations; in contrast, nonsolid things have transient
et al.,, 2001). Further, the data from the present experimentshapes but invariant material. It makes sense to refer to things by
strongly suggest that children learn the correlations they exploit irtheir stable properties. In addition, there are, as a consequence of
the novel noun generalization task—the overarching one that soliphysics, shape—propensity correlations and material-propensity
things are named by shape and nonsolid things by material, as wetbrrelations. For example, certain kinds of shapes can with proper
as correlations concerning the constructedness of shape and, forovement swim more easily than other kinds, certain kinds of
English-speakers, count—-mass syntax. All of this evidence pointshapes but not others afford carrying other things, and certain
to children’s biases in the novel nhoun generalization task as prodkinds of materials but not others can soak up liquids. The second
ucts of the correlational structure of early noun categories rathelikely cause is human psychology and biology. For example, the
than the correlational structure of early vocabularies being thevisual system may be tuned to attend to the invariant and nonac-
product of internal biases. cidental properties of rigid shapes (Biederman, 1987; Spelke,

However, there is potentially contradictory evidence to this1990; Wisniewski, Lamb, & Middleton, 2003). Further, and per-
conclusion. Lucy (1992) presented evidence from speakers dfiaps more important, the property—propensity correlations in the
Yucatec Mayan that might be interpreted in terms of a shape biaworld are important to how people use and react to things in the
that is independent of lexical categories. Yucatec presents a relevorld. In particular, the functional properties of solid things may
vant case because nouns in this language do not refer to discreepend mostly on their shape, whereas the functional properties of
countable entities as do English names; instead, all nouns inonsolid things may depend mostly on their material (see Gelman
Yucatec are quantificationally neutral, as are mass nouns in En& Bloom, 2000; Leyton, 1992; Samuelson & Smith, 2000). These
glish. Sountz’iit kib is used to refer to one candle, withntz"it facts about the physical world and human psychology may create
meaning something like “one long thin” arkib typically trans-  the statistical regularities in the early noun lexicon. Languages
lated as meaning “wax.” In everyday speech the classifier—onenust, after all, evolve words that match human psychological
long thin—is often omitted. Thus, this is a language that seems tmeeds. But still, it may be the statistical regularities in the early
point to material categories with little attention to shape. Consisnoun lexicon that create—via ordinary processes of associative
tent with this idea, adult speakers of Yucatec classify solid object$earning—children’s generalized expectations about the category
by material. Given that the nouns in Yucatec refer to material-structures of different kinds.
based categories, this fact may be taken as support for the idea that
the lexical categories one learns _create the distinctions one makes. A Web of Correlations
However, the developmental evidence from learners of Yucatec
suggests a strikingly contradictory conclusion. Speakers of Yu- Although we began this article with the solidity—nonsolidity
catec do not show a material bias for objects until they are oldedistinction and although solidity is a strong predictor of category
than 9 years. Children between 7 and 9 years show a shape biatructure, our full pattern of findings makes clear that children’s
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knowledge about different kinds is not simply knowledge aboutthe learning environment beyond those that partition solid and
the predictive relation between solidity and category structurenonsolid things. Recent studies of children’s categories (e.g.,
Instead, it is also about the overlapping correlations among solidtavin & Hall, 2001; Yoshida & Smith, 2003a, 2003c) as well as of
ity, the constructedness—complexity of shape, language, and lexadults’ categories (e.g., McRae et al., 1997) suggest that correla-
ical category structure. Shape constructedness appears to playtians between perceptual properties, actions, functions, and cate-
particularly strong role. This is predicted by our analysis of thegory structure may underlie partitions between such different kinds
similarity space, that solid things can take more varied shapess foods, tools, vehicles, and animals. The present account sug-
including ones with many parts (and thus more evidence of theigests that children should learn about these distinctions—and be
nonaccidental nature), and by the correlations in the early lexiconable to extend that learning to novel instances—as their noun
Gelman and Bloom (2000) and Prasada et al. (2002) have alseocabularies expand and as these associations accrue. In brief, the
argued on other grounds that nonaccidental shapes are crucial psocesses studied here may be relevant to explaining children’s
children’s and adults’ conceptualizations of artifactual objects agxpectations about a wide variety of kinds. The power of these
being “designed” for some purpose. Although our results concermpotential explanations derives from the incorporation of multiple
children’s extension of category names by perceptual propertieand bidirectionally interconnected correlations of various
(and not their reasoning about origins), they support the idea thattrengths. In the present case, we found that for English-speaking
kind of shape is a crucial factor in children’s developing knowl- children, solidity was correlated with kind of shape, with syntax,
edge about kinds. and with category structure. Kind of shape, in turn, was correlated
Our results also show that syntax is part of the correlational mixwith syntax, with category structure, and with solidity. Children’s
In the early lexicon, the syntactic frames in which nouns areexpectations, then, about the different kinds studied here are de-
presented correlate both with the perceptual properties of thingpendent on a web of correlations among a number of properties of
and with their category structure. Our simulations of Imai andlanguage, of objects, and of object categories. This, we suggest,
Gentner's (1997) results illustrate how those correlated syntacticnay be the very nature of knowledge about different kinds.
cues interact with correlations between perceptual properties such The fact that the knowledge is at root correlational also means
as solidity, kind of shape, and category structure. Our simulationshat these global patterns will be context-sensitive, varying adap-
suggest that the count syntax correlations available to Englishively to meet specific tasks and the specific learning environment.
speakers push them to view simply shaped solids as more likén this way, children’s knowledge about different kinds may be
complexly shaped solids than like nonsolids. The implication ischaracterized as a system of soft regularities, much as has been
that perceptual cues such as the deformation of shape wheproposed for English spelling to sound correspondences (e.g.,
touched (our definition of solidity in the adult judgments) have Seidenberg & McClelland, 1989) or their knowledge of morphol-
more weight for English speakers than for Japanese speakem®y (e.g., McClelland & Patterson, 2002).
because they correlate with syntax, whereas perceptual cues about
the constructedness of shape may have more weight for Japanese
speakers. This is a testable prediction for future work. The critical
point is that by our account, all of these factors—perceptual All modeling is simplification, and the particular implications
properties, syntactic frame, and category structure—jointly andhat derive from our simulations depend on the significance placed
through the same mechanisms create children’s generalized expem connectionist modeling and, more broadly, on what one takes to
tations about how solid and nonsolid things are named. be the role of modeling in theory and experimentation. One could
Learned associations, like correlations, are bidirectional. Thustake a narrow view and think of these networks as computational
if solidity predicts shape categories, then shape categories predidevices that simply measure the regularities in their input. If so, the
solidity, and if count-noun syntax predicts constructed shapes, thecontributions of the simulations lie in three areas. First, our sim-
constructedness of shape predicts count syntax. Our experimenttations show that there are regularities among early lexical cate-
present some evidence for this bidirectionality in that the soliditygories—perceptual information, syntactic information, and within-
of the named entity predicts a category of instances of the sameategory similarities—that are sufficient to create generalized
solidity, as well as instances of the same shape, and constructedxpectations about how to categorize even novel things. Second,
ness of shape predicts a category organized by shape. Hall (19986)ey provide a computational tool for generating predictions from
and Prasada et al. (2002) have also reported evidence of correla- complicated, messy, noisy mass of correlations. Finally, our
tions in both directions. Specifically, they reported that solidity, experiments with simple neural networks show the plausibility of
constructedness of shape, and the category relevance of shape latirning second-order generalizations from specific individual in-
predict count-noun syntax. Bidirectionality is computationally im- stantiations of the first-order categories.
portant because it means that overlapping but noisy correlations We prefer a broader view, that the assumptions about mecha-
build on and mutually reinforce each other (see Yoshida & Smith,nisms that underlie these simple statistical learners may also be
2003a). Bidirectionality is developmentally important because itpsychologically (and biologically) appropriate descriptions of the
means that cues codevelop. By such a model, attention to soliditiearning process. According to this view, the simulations have
is not a prerequisite to learning about shape nor is learning aboumportant implications for the origin, nature, and consequences of
shape a prerequisite to learning about solidity. Rather, the prediczhildren’s knowledge about naming solids and nonsolids. For
tive relation between the two and the increased attention thatxample, the associative learning account offers insights into how
predictive relation engenders will codevelop. children become “smart” word learners. The networks are general-
These ideas have relevance beyond the distinction betwegpurpose learning devices. They begin with built-in sensitivities to
categories of solid and nonsolid things. There are correlations iparticular perceptual properties but with no prespecified biases to

Networks and Children
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attend to some properties in particular contexts and to others in ana generally interpreted as contrary to the associative learning
different context. However, with learning, the networks becomeaccount.
fine-tuned, internalizing the correlations present in their environ- For example, Prasada et al. (2002) cleverly showed that whether
ment. A learner endowed with such ability would be very powerful adults construe an entity as an object or a substance depends
indeed, as it would be able to tweak itself and adapt to the languageritically on their beliefs about the importance of shape rather than
learned and to the specific category at hand. This implies that asn the perceptual property of the shape itself. Adults were pre-
long as there are regularities that can be exploited by the learner tgented with an accidental bloblike form. When they were presented
simplify its learning task, these regularities do not have to bewith several exact replications of that accidental shape, the adults
instantiated in the minds of learners prior to learning. took the shape as nonaccidental and therefore important to the
The assumptions behind the simulations also have implicationtexical category. This result, at first glance, might be interpreted as
for explaining the developmental trend in the novel noun genershowing that adults’ reasoning about object and substance catego-
alization task. The theoretical work reported in this article isries involves different mechanisms than the correlational learning
admittedly limited in this regard as it focused on the statisticalstudied here, as we showed that accidental shapes are correlated
match between the nouns known by 2- to 3-year-olds and theiwith material categories. However, the main difference may not be
novel noun generalizations. However, there are possible exterthe mechanism—or the nature of underlying knowledge—but in
sions of the present account that may prove informative as to wh{he correlations. The correlational structure that generates adults’
the developmental trend looks as it does. For example, the nejidgments may include more than associations among solidity,
works’ distinction between solids and nonsolids requires the forshape, and material; specifically, the correlational structure may
mation of higher order correlations between cues (perceptual proghclude associations among words, experiences with instances of
erties such as solidity or syntactic frame) and category structuregxactly the same shape, and means of manufacturing things. In-
Category structure, in turn, is a lower order generalization ovedeed, with development, concrete perceptual properties—such as
associations between particular names (e.g., “ball”) and particulageformation of shape by touch—may become less important as
specific things (e.g., a round rubber yellow ball, a wooden croqueterbal descriptions, event structures, or function becomes the more
ball, or a large beach ball). It is interesting that the formation ofPervasive and thus more predictive cues. Nonetheless, if the un-
higher order correlations may depend systematically on the nunrderlying knowledge is associative, then adults should still show
ber and range of lower order correlations, and this may exp|airgraded and context-sensitive patterns of judgments that are influ-
why very young word learners (12- to 18-month-olds) conserva-enced by solidity and constructedness of shape. The relevance of
tively generalize novel names for novel things, restricting the naméhese perceptual properties is expected to remain because these
to nearly identical things (e.g., Woodward et al., 1994), and it maycorrelations so strongly characterize a portion of the adult noun
also explain why a generalized shape bias emerges sooner affkicon, the early learned names for concrete objects and
stronger than a generalized material bias. The dependence of the3dPstances.
higher order correlations on lower order lexical categories also A contrasting position can also be argued. Children’s novel
raises the question of whether and how lexical learning per se (v4!0Un extensions for solids and nonsolids (and our associative
other forms of category learning) might play a computationallyacco‘{”t of those data) may be only r_emotenly conne(_:ted to concepts
important role in children’s developing knowledge about kinds. Of object and substance. One starting point for this counterargu-

These ideas also need to be pursued in future work. ment is that most of the data typically taken by others as indicating
object and substance concepts are not about solidity and nonso-

lidity but are, instead, about countability. That is, the object—
Associations and Concepts of Object and Substance substance distinction is usually defined as being about whether an
entity is conceptualized as discrete and thus countable or whether
We have offered an explanation of children’s generalized exit is conceptualized as a continuous quantity (e.g., Gordon, 1985;
pectations about how names map to categories of novel solid andakoff & Johnson, 1980; Lenat & Guha, 1990; Pelletier, 1979). As
novel nonsolid things, suggesting that these expectations are thg defined, this distinction is important to reasoning about quan-
product of a web of correlations and the higher order generalizatities, to grammatical class in many languages, and to a variety of
tions they afford, learned as children learn nouns. What does thimferences that one can make about different kinds. By this defi-
explanation—and the results that support it—imply about thenition, objects may be solid or nonsolid (e.g., chairs and bubbles)
theoretical constructs of object and substance concepts? One pas- even abstract (e.g., ideas), and substances may be solid, non-
sibility is that the theoretical constructs of object and substance areolid, or abstract (e.g., wood, water, and justice). One real possi-
merely summary terms for the kinds of associations studied herebility, then, is that children’s different name extensions for solids
Correlational learning may underlie behaviors suggestive of and nonsolids in the novel noun generalization task—and the
psychological ontology, that is, representations that specify thé&nowledge and processes that underlie those performances—have
fundamental nature of different kinds. This seems particularlylittle to do with their understanding of what is countable or not.
plausible if the bundles of correlations that create mature knowl- Whereas children’s generalized expectations about naming sol-
edge include more than the perceptual properties. McRae et alds and nonsolids may derive from learned associations, children’s
(1997) provided an example of this idea. They modeled aduliconcepts of object and substance may have their origins in infants’
judgments of semantic relatedness with an associative theory iooncepts of number. Indeed, recent work on infant number con-
which the features are perceptual properties (e.g., shape, moves oapts suggests that before word learning, infants distinguish cohe-
own) and relational roles (e.g., used to carry water, friendly).sive (typically solid) things and noncohesive (typically nonsolid)
Extending the theory in this way may allow us to explain phenom-things as countable versus noncountable (see Chiang & Wynn,
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2000; Feigenson, Carey, & Spelke, 2002; Huntley-Fenner et alknow that there are different kinds of things in the world that are
2002; Xu, 1997; see also van Marle & Scholl, 2003). Still, one categorized in different ways.

reason developmentalists have been so interested in children’s
different name extensions for solids and nonsolids is the likely
relevance of this distinction to concepts of object and substance.
Solidity seems an ideal expression of objectness in that solid thinggjederman, 1. (1987). Recognition by components: A theory of human
are discrete with cohesive, bounded shapes. Likewise, nonsolidity image understandingsychological Review, 94,15-147.

seems an ideal expression of substances because nonsolids 8teom, P. (1996). Intention, history and artifact concefitegnition, 60,
noncohesive masses with stable materials but transient forms. It is 1-29.

clear that an important theoretical problem to be resolved is théloom, P. (2000)How children learn the meanings of wordsambridge,
relation between children’s use of perceptual cues to category MA: MIT Press. _ _ _
structure in the novel noun generalization task, infants’ attention tg>°°th: A & Waxman, S. (2002a). Object names and object functions
the number of cohesive but not noncohesive things, and develop- serve as cues to categories for infaritsvelopmental Psychology, 38,

ina k led b bi d sub 948-957.
ing knowledge about objects and substances. Booth, A., & Waxman, S. (2002b). Word learning is “smart”: Evidence

that conceptual information affects preschoolers’ extension of novel
words. Cognition, 84,B11-B22.
Booth, A., & Waxman, S. (2003). Mapping words to the world in infancy:

The id hat diff . lati | Infants’ expectations for count nouns and adjectidesirnal of Cogni-
e idea that differences in correlational structure create peo- 4, o Development, 4357-381.

ple’s knowledge about different kinds of things has been offeredsyger, 3., & Prasada, S. (1997). Quantification of solid and nonsolid
by others. For example, Gelman (1988) and Keil (1989) argued entities: The role of perceived arbitrariness of structure. In E. Hughes,
that the distributional patterns of correlated features differ across M. Hughes, & A. Greenhill (Eds.Rroceedings of the Boston University
artifacts and living things. McRae et al. (1997) provided evidence Conference on Child Languadep. 36—44). Boston: Cascadilla Press.
showing that features within a single category of animate thingdBushnell, E. W. (1982). Visual-tactual knowledge in 8-, 9.5-, and 11-
are more densely intercorrelated and less variable than featuresmenth-old infantsinfant Behavior and Development, 63-75. _
within individual categories of inanimate things. Such correla-Bushnell, E. W., & Boudreau, J. P. (1991). The development of haptic
tional differences have also been offered as explanations for perception during infancy. In M. A'.He"er & W Schiff (Eds.Jhe
. R . . psychology of touclipp. 139-161). Hillsdale, NJ: Erlbaum.

c_ategory-specmc deficits in |nd|v_|duals with brain damage (Dev- Chiang, W., & Wynn, K. (2000). Infants’ tracking of objects and collec-
lin, Gonnerman, Andersen, & Seidenberg, 1998; Farah & McClel-  ons. cognition, 77,169-195.
land, 1991). Patients have been described with deficits that suggeghristiansen, M. H., & Chater, N. (2001). Connectionist psycholinguistics:
distinct systems for animals, plants, artifacts, and also foods. It has Capturing the empirical datdrends in Cognitive Sciences, &2—88.
been suggested that these domains are neurally segregated becaQslenga, E., & Smith, L. B. (2003). The emergence of abstract ideas:
they depend on different sets of intercorrelated properties. All of Evidence from networks and babid2hilosophical Transactions by the
these ideas clearly are consistent with the present demonstrationRoyal Society, 3581205-1214. _ o
that correlated properties may create young children’s expectatiors®/unga E., & Smith, L. B. (2004)Correlation versus prediction in
about how solids and nonsolids are named. However, the present&h;:{;zr? ;"’sourgniizg'?g; iﬁ’li;'tl:ggu'snc evidence and simulations.
WOI’!( goes beyond these prior SL.JggeSti.OFIS in at least three Wa_y%evlin, J. T[.), Gonnerman, LFT M., Andérsen, E. S., & Seidenberg, M. S.

First, we show that the correlational differences that characterize (1998 category-specific semantic deficits in focal and widespread
individual categories create higher level correlations between cat- prain damage: A computational accoudturnal of Cognitive Neuro-
egory structure and particular perceptual properties such as solidity science, 1(L), 77-94.
and type of shape. These higher level correlations, in turn, creatBickinson, D. K. (1988). Learning names for materials: Factors constrain-
higher level categories that transcend the specific properties of ing and limiting hypotheses about word meaniipgnitive Develop-
specific things. Thus, the learner has expectations about categoryment, 3,15-35. o _
structure for things not yet encountered, that is, generalized ei-gl'ese”druc"' G., & Bloom, P. (2003). How specific is the shape bias?
pe.ct.atlons about solid "?‘”d nonsolid .thlng.s. Second, W? place thIgie:sendruck, G., Markson, L., Bloom, P. (2003). Children’s reliance on
origins of these generalized eXpECte}tlons 'r_] the correlational struc_:- creator’s intent in extending names for artifad®sychological Science,
tures of early learned noun categories. Third, we show how unbi- 14, 164-168.
ased learners become biased learners. The networks used in thgsgah, M. J., & McClelland, J. L. (1991). A computational model of
simulations use a simple local correlational learning rule. At the semantic memory impairment: Modality specificity and emergent cate-
start of learning, this is all the network has, and it is a relatively gory specificity. Journal of Experimental Psychology: General, 120,
unbiased learner. But with each word the network learns, it be- 339-357.
comes more biased, developing expectations that are both increasarkas, I, & Li, P. (2001). A self-organizing neural network mode of the
ingly general and increasingly fine-tuned about the correlations 2cquisition of word meaning. In M. E. Altmann & A. Cleeremans (Eds.),
that matter for different kinds. The network as a whole, its corre- Proceedings of the 2001 Fourth International Conference on Cognitive

. . . . Modeling (pp. 67—72). Mahwah, NJ: Erlbaum.
lational learning rule, and its past learning are the model of thq:eigenson’ L. Carey, S., & Spelke, E. (2002). Infants’ discrimination of

learner. From this perspective, the learner and the learning process,;mper versus continuous exte@ognitive Psychology, 483—66.
change with each word learned. Thus, children may start with genson, L., Dale, P., Reznick, J. S., Thal, D., Bates, E., Hartung, J., et al.

simple mechanism and as relatively unbiased learners. However, (1993). The Macarthur Communicative Development Inventory: User's
through engagement with the world, learners become smart; they guide and technical manuaban Diego, CA: Singular Publishing Group.
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KINDS FROM ASSOCIATIONS 381
Appendix A

Network Update Functions

The activation update rule used was the rule of the interactive activation The input to uniti at timet was calculated as
and competition model (McClelland & Rumelhart, 1986).
If hlt >0, n
ho= e w, (®)
Aal = hifa™ — (&' - Da Y], -1
where n is the number of units in the network amg, is the weight
connecting units andj.

A& = h[(@~* — DA~ Y — a" The weight update function used was Contrastive Hebbian Learning
' ' ’ (Hopfield, 1982, 1984; Movellan, 1990),

else

wherea! is the activation of unit at timet; hf is the input to unit at time

t; anda™, a™", andD, are, respectively, the maximum activation, mini
mum activation, and decay rate associated withll units in the network ~ where phase is 1 during the clamped phase-afidduring the unclamped
currently have maximum activations of 1 and minimum activations of 0, or free phase) is the learning rate or step size of weight change (.001 for
and the decay rate was set to .05 for all simulations. all networks), andy, is the activation of unit.

Aw; = phase *A * (a - &), 9)

(Appendixes continje
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Appendix B
Summary of the Architecture, Training, Test Sets, and Comparisons in the Simulations
Exp. Architecture Training set Testing set Comparison on test trials

1 12 shape units
12 material units
2 solidity units
24 word units
30 hidden layer units

1A 12 shape units
12 material units
12 size units
12 location units
30 hidden units

2 Same as Exp. 1

4 Same as Exp. 1

6 Same as Exp. 1

8 Same as Exp. 1

9 Same as Exp. ¥ 2
syntax units

12 solid—shape categories
12 nonsolid—material categories

Same as above

nonsolid—shape, solid—-material, and
nonsolid—material categories

Same as above

Patterns in same proportions &Same as Exp. 1

in English-speaking
children’s vocabularies
Same as Exp. 2

Same as Exp. 2

Same as Exp. 1

Same as Exp. 1

Patterns in same proportions &40 novel instances of each of solid—

in Japanese-speaking
children’s vocabularies
or
Same as in Exp. 2

Same as Exp. 2 syntax
correlations

complex shape, nonsolid—complex
shape, solid—simple shape, nonsolid—
simple shape, solid—material, and
nonsolid—material categories

Same as Exp. 8

40 novel instances of each of solid—shapeSolid exemplar: solid shape vs. solid

material
Nonsolid exemplar: nonsolid
material vs. nonsolid shape

Same as above

Same as Exp. 1

Cross-solidity sets
Solid exemplar: nonsolid shape
vs. solid material
Nonsolid exemplar: solid material
vs. nonsolid shape
All nonsolid exemplars (simple
shape)

Traditional set: simply shaped
nonsolid shape match vs.
simply shaped nonsolid
material match

Cross-solidity

Simple: simply shaped solid
material match vs. nonsolid
shape match

Complex: complexly shaped solid
material match vs. nonsolid
shape match

Complexly shaped solid exemplar:
solid—complex shape vs. solid—
material shape (randomly
generated shape)

Simply shaped solid exemplar:
solid—simple shape vs. solid—
material shape (randomly
generated shape)

Nonsolid (and thus simply shaped)
exemplar: nonsolid material vs.
nonsolid shape

Same as Exp. 8

Note. Exp.= experiment.
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